期刊文献+

转移概率部分已知的Markov跳变系统鲁棒H_2控制 被引量:2

Robust H_2 Control for Uncertain Markov Jump Linear Systems with Partly Known Transition Rates
下载PDF
导出
摘要 研究一类具有多胞型不确定性的Markov跳变连续时间系统的鲁棒H2控制问题.这类系统跳跃过程中的转移概率包括完全已知、未知但已知转移概率的上下界和完全未知三种情况.首先针对此类Markov跳变系统,基于参数依赖型Lyapunov函数给出新的鲁棒稳定性判据,然后在线性矩阵不等式的框架下得到相应的鲁棒H2控制器设计方法.数值仿真算例验证了本方法的有效性. The robust H2 control problem for a class of continuous-time Markov jump linear systems with polytopic-type parameter uncertainty was investigated.The considered transition probabilities includes completely known case,partly unknown with known lower and upper bounds case and completely unknown case.Firstly,based on the parameter-dependent Lyapunov function,new stability condition for this kind of uncertain Markov jump systems was derived.And then,the corresponding robust H2 controller design method was proposed in the framework of linear matrix inequalities.Finally,numerical examples were given to demonstrate the effectiveness of the proposed method.
作者 叶丹 范泉涌
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期153-156,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61273155) 全国百篇优秀博士学位论文作者专项基金资助项目(201157) 教育部新世纪人才支持计划项目(NCET-11-0083) 中央高校基本科研业务费专项资金资助项目(N100404023)
关键词 MARKOV跳变系统 部分已知转移概率 不确定性 H2控制 线性矩阵不等式 Markov jump system partly known transition rate uncertainty H2 control linear matrix inequality
  • 相关文献

参考文献1

二级参考文献11

  • 1Krasovskii N N, Lidskii E A. Analytical design of controllers in systems with random attributes, Parts I-III[J]. Automation and Remote Control, 1961, 22(1/2/3): 1021- 1025, 1141-1146, 1289-1294.
  • 2Boukas E K, Liu Z K, Liu G X. Delay-dependent robust stability and H∞ control of jump linear systems with time- delay[J]. Int J of Control, 2001, 74(4): 329-340.
  • 3Souza C. Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems[J]. IEEE Trans on Automatic Control, 2006, 51(5): 836-841.
  • 4Goncalves A, Fioravanti A, Geromel J. H∞ filtering of discrete-time Markov jump linear systems through linear matrix inequalities[J]. IEEE Trans on Automatic Control, 2009, 546: 1347-1351.
  • 5Zhang L, Boukas E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities[J]. Automatica, 2009, 45(2): 463- 468.
  • 6Zhang L, Boukas E K. Mode-dependent H∞ filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities[J]. Automatica, 2009, 45(6): 1462-1467.
  • 7Zhang W, Xie L. Interval stability and stabilization of linear stochastic systems[J]. IEEE Trans on Automatic Control, 2009, 54(4): 810-815.
  • 8Mao X. Sability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and their Applications, 1999, 79(1): 45-67.
  • 9Huang Y, Zhang W, Feng G. Infinite horizon H2/H∞control for stochastic systems with Markovian jumps[J]. Automatica, 2008, 44(3): 857-863.
  • 10Ho D W C, Lu G. Robust stabilization for a class of discrete-time nonlinear system via output feedback: Theunified LMI approach[J]. Int J of Control, 2003, 76(2): 105-115.

共引文献9

同被引文献17

  • 1唐小我,曾勇,曹长修.市场预测中马尔科夫链转移概率的估计[J].电子科技大学学报,1994,23(6):643-648. 被引量:17
  • 2王能超.数值分析简明教程[M].北京:高等教育出版社,2001:52-57.
  • 3XIONG Junlin, LAM J. Fixed-order robust H filter design for Markovian jump systems with uncertain probabilities[J]. IEEE T Signal Proees, 2006,54(4):1421 - 1430.
  • 4ZHANG Lixian, BOUKAS E K. Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities[J-]. Automatica, 2009(45) :463 - 468.
  • 5XIONG Junlin, LAM J, GAO Huijun, et al. On robust stabilization of Markovian jump systems with uncertain switching probabilities[J]. Automatica, 2005(41):897 - 903.
  • 6ZHANG Lixian, BOUKAS E K. H control for discrete-time Markovian jump linear systems with partly unknown transition probabilities[J]. Int J Robust Nonlinear Control, 2008 (19) :868 - 883.
  • 7ZHANG Lixian, BOUKAS E K, LAM J. Analysis and Synthesis of Markov Jump Linear Systems With Time- varying Delays and Partially Known Transition Probabilitiesl-J]. IEEE T Automat Contr, 2008,53(10) :2458 - 2464.
  • 8ZHANG Lixian, BOUKAS E K. Discrete-- time Markovian jump linear systems with partly unknown transition probabilities: H Filtering Problem[,R]. AACC American, 2008 : 2272 - 2277.
  • 9傅应定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社,2008:23-28.
  • 10何舒平,刘飞.基于观测器的不确定时滞Markov跳变系统H_∞控制[J].系统工程与电子技术,2007,29(12):2117-2121. 被引量:4

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部