期刊文献+

植物吸收根的增殖和生长与养分变异的关系——臭椿、翠菊、加拿大一枝黄花分根实验的启示 被引量:1

Proliferation and growth of plant fine roots and the influences from nutrient variation―implications from the split-root experiments of Ailanthus altissima, Callistephus chinensis and Solidago canadensis
原文传递
导出
摘要 构件理论认为植物根可以相对独立地吸收养分和对所处环境的养分条件做出响应。根据成本-收益理论,单个根(构件)的生死、生长发育与其吸收的养分收益和自身建造、维持的消耗有关。基于此,该文提出两个关于吸收根生死条件的假设:1)当可利用养分低于低临界值,根死亡在一段时滞(数天到几周)后发生;2)当可利用养分高于高临界值并持续一段时间,新的侧根产生。为了检验这两个假设,用臭椿(Ailanthus altissima)、翠菊(Callistephus chinensis)、加拿大一枝黄花(Solidago canadensis)作实验物种,设计了温室分根实验。每株植物选3个一级根,分别引入3个不同养分水平的斑块:0、20、200μgN·g–1。每4天将根暴露并拍照,查数新根数并测量细根总长度和一级侧根长。由于高养分处理斑块内根的快速生长,实验在开始后8天或12天结束。结果显示:除臭椿在0养分处理外,三物种在各养分处理下都有侧根产生,总根长均有增加;臭椿、翠菊、加拿大一枝黄花在不同观测时间和养分水平处理间的侧根数目和总根长差异显著,而一级侧根长除臭椿外变异均较小;整个过程中没有根死亡。研究结果部分支持两个假设。本研究还为进一步探究根模块构件增殖、生死过程机制提出新的建议,即除需要更长的实验时间外,还应该考虑:1)多种资源各自及联合对根生长、生死过程的影响;2)资源斑块和整个根系生长背景的资源丰度对比;3)根构建和根维持的相对C消耗。 Aims Modular theory of plants considers plant roots are relatively independent in resource absorbing and re-sponding to heterogeneous soil environments, particularly resource environments. According to the cost-benefit theory, proliferation, growth and death of individual absorbing roots (modules) depend upon their resource uptake related to the carbon costs of their construction and maintenance, with a certain time-lag. Thus we hypothesized that: 1) a root will die when available nutrients are below a certain low threshold and last for a certain period and 2) new roots will emerge when available nutrients are above a certain high threshold and last for a certain period. Methods We designed a greenhouse split-root experiment using three plant species: Ailanthus altissima, Cal-listephus chinensis and Solidago canadensis. The plants were grown individually in pots, and then three fine roots (uptaking roots) per plant were carefully sorted and placed in three plastic vessels of about 70 mL with one root per vessel. Three nutrient levels of 0, 20 and 200 μg N·g–1 soil were applied in the three vessels. These roots were carefully exposed and photographed every four days, and the numbers of lateral roots, the length of 1st order lat-erals and the root length were evaluated. Repeated-measure ANOVA was used for statistical analysis. Important findings The numbers of laterals and total root length differed significantly among the three species and under the three N levels. Both lateral numbers and total root length were the least in the 0 μg N·g–1 treatment for A. altissima, and the highest in the 200 μg N·g–1 level for S. canadensis. The length of 1st order laterals was less responsive than the other two measures. No fine roots were found dead during the experiment. These results demonstrated that the different species had different growth rates of fine roots under the same N treatments as expected, and indicated that different species may have different N thresholds. Results provided partial support for our hypotheses and hints for future experiments. We suggest that a sufficient examination of the hypotheses may require 1) a longer experiment period, 2) control of other vital resources such as water and other limiting nutrients and 3) consideration of the resource contrast between the treatment patches and the overall level. The relative contrast of C costs between root construction and root maintenance should also be considered.
作者 胡凤琴 牟溥
出处 《植物生态学报》 CAS CSCD 北大核心 2013年第2期93-103,共11页 Chinese Journal of Plant Ecology
基金 国家自然科学基金(30830024和30770330)
关键词 臭椿 翠菊 细根生死 养分斑块 加拿大一枝黄花 分根实验 Ailanthus altissima Callistephus chinensis fine root initiation and death nutrient patches Solidago canadensis split-root experiment
  • 相关文献

参考文献58

  • 1Alpert P,Simms EL. The relative advantages of plasticity and fixity in different environments:When is it good for a plant to adjust[J].Evolutionary Ecology,2002.285-297.
  • 2Bai WM,Wang ZW,Chen QS,Zhang WH Li LH. Spatial and temporal effects of nitrogen addition on root life span of Leymus chinensis in a typical steppe of Inner Mongolia[J].Functional Ecology,2008.583-591.
  • 3Benková E,Michniewicz M,Sauer M,Teichmann T Seifertová D Jürgens G Friml J. Local,efflux-dependent auxin gradients as a common module for plant organ formation[J].Cell,2003,(5):591-602.doi:10.1016/S0092-8674(03)00924-3.
  • 4Bliss KM,Jones RH,Mitchell RJ,Mou PP. Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behavior[J].New Phytologist,2002.409-417.
  • 5Block RMA,van Rees KCJ,Knight JD. A review of fine root dynamics in Populus plantations[J].AgroForestry Systems,2006.73-84.
  • 6Blouin M,Puga-Frcitas R. Combined effects of contrast between poor and rich patches and overall nitrate concentration on Arabidopsis thaliana root system structure[J].Functional Plant Biology,2011.364-371.
  • 7Burton A J,Pregitzer KS,Hendrick RL. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J].Oecologia,2000,(3):389-399.doi:10.1007/s004420000455.
  • 8Caldwell MM,Richards JH. Competing root systems:morphology and models of absorption[A].New York:Cambridge University Press,1986.251-273.
  • 9Casimiro I,Beechman T,Graham N,Bhalerao R Zhang H Casero P Sandberg G Bennett MJ. Dissecting Arabidopsis lateral root development[J].Trends in Plant Science,2003,(4):165-171.doi:10.1016/S1360-1385(03)00051-7.
  • 10Casimiro I,Marchant A,Bhalerao RP,Beeckman T Dhooge S Swarup R Graham N Inzé D Sandbery G Casero P Bennett MJ. Auxin transport promotes Arabidopsis lateral root initiation[J].Plant Cell,2001,(4):843-852.

二级参考文献231

  • 1Cardon ZG, Whitbeck JL (2007). The Rhizosphere." an Ecological Perspective. Academic Press, San Diego.
  • 2Casper BB, Cahill JrJF (1996). Limited effects of soil nutrient heterogeneity on populations of Abutilon theophrasti (Malvaceae). American Journal of Botany, 83, 333-341.
  • 3Chen DM, Taylor AFS, Burke RM, Caimey JWG (2001). Identification of genes for lignin peroxidases and manganese peroxidases in ectomycorrhizal fungi. New Phytologist, 152, 151-158.
  • 4de Kroon H, Liesje M (2006). Root foraging theory put to the test. Trends in Ecology & Evolution, 21, 113-116.
  • 5de Kroon H, Visser EJW, Huber H, Mommer L, Hutchings MJ (2009). A modular concept of plant foraging behaviour: the interplay between local responses and systemic control. Plant, Cell & Environment, 32, 704~712.
  • 6Dell B, Malajczuk N, Bougher NL, Thomson G (1994). Development and function of Pisolithus and Scleroderma ectomycorrhizas formed in vivo with Allocasuarina, Casuarina and Eucalyptus. Mycorrhiza, 5, 129-138.
  • 7Dickie IA, Xu B, Koide RT (2002). Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist, 156, 527-535.
  • 8di Pietro M, Churin JL, Garbaye J (2007). Differential ability of ectomycorrhizas to survive drying. Mycorrhiza, 17, 547- 550.
  • 9Donnelly DP, Lynne B, Jonathan LR (2004). Development, persistence and regeneration of foraging ectomycorrhizal mycelial systems in soil microcosms. Mycorrhiza, 14, 37--45.
  • 10Duddridge JA, Malibari A, Read DJ (1980). Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature, 287, 834-836.

共引文献89

同被引文献20

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部