期刊文献+

基于粒子群优化算法的多因子自适应滤波 被引量:3

Multi Adaptive Kalman Filtering with Particle Swarm Optimization
原文传递
导出
摘要 在抗差多因子自适应滤波的基础上,提出基于粒子群优化智能算法进一步搜索自适应因子的优化值,提高自适应因子的可靠性。在基于状态不符值构造的自适应因子的基础上,构造适应性函数,采用粒子群优化算法搜索更有效的自适应多因子。利用动态导航数据进行验证,结果表明,基于粒子群优化的多因子自适应滤波能更有效地控制异常影响,提高动态导航精度。 The key problem of adaptive navigation is to determine the adaptive factors, in order to control the outlying effects of dynamic model errors. The optimal adaptive factors, however, are difficult to be obtained. On the base of multi adaptive robust Kalman filtering, a new kind of multi adaptive robust filtering, which uses particle swarm optimization to determine the factors, is proposed. The adaptive factors optimized by particle swarm optimization have higher reliability than those from current methods. First, multi adaptive factors are computed according to difference of the predicted state and calculated one then particle swarm optimization is employed to look for more accurate factors if the reasonable fitting function is chosen. An actual dynamic GPS data set is employed to test the new adaptive filtering procedure. It is shown that multi adaptive robust filtering with particle swarm optimization can control the influence of outliers more efficiently, and improve the accuracy of navigation.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第2期136-139,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41004013)
关键词 粒子群优化算法 多因子 自适应滤波 抗差估计 particle swarm optimization multi factors adaptive filtering robust estimation
  • 相关文献

参考文献14

  • 1杨元喜,何海波,徐天河.论动态自适应滤波[J].测绘学报,2001,30(4):293-298. 被引量:186
  • 2Yang Yuanxi, He Haibo, Xu Guochang. Adaptively Robust Filtering for Kinematic Geodetic Positioning[J].Journal of Geodesy, 2001, 75(2/3):109-116.
  • 3欧吉坤,柴艳菊,袁运斌.自适应选权滤波[C]//大地测量与地球动力学进展.武汉:湖北科学技术出版社,2004:816-824.
  • 4崔先强,杨元喜.分类因子自适应抗差滤波[J].自然科学进展,2006,16(4):490-494. 被引量:21
  • 5Yang Yuanxi, Cui Xianqiang. Adaptive Robust Fil- ter with Multi Adaptive Faetors[J]. Survey Review, 2009, 40(309) :260-270.
  • 6Kennedy J, Eberhart R C. Particle Swarm Optimiza- tion[C]. IEEE Int Conf Neural Networks Perth, Australia, 1995.
  • 7Shi Y, Eberhart R C. A Modified Particle Swarm Optimizer [ C]. The Conference of EvolutionaryComputation, IEEE, Anchorage, 1998.
  • 8Shi Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]. The Conference oI Evolu- tionary Computation, IEEE, Soul, 2001.
  • 9Docator S, Venayagamoorthy G. Unmanned Vehicle Navigation Using Swarm Intelligence[C]. The 2004 Intenational Conference on Intelligent Sensing and Information Processing, India,2004.
  • 10杨元喜,高为广.基于方差分量估计的自适应融合导航[J].测绘学报,2004,33(1):22-26. 被引量:57

二级参考文献26

共引文献363

同被引文献29

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部