期刊文献+

分带K-均值聚类的平面标靶定位 被引量:7

Planar Target Location Based on the Zoning K-means Clustering
原文传递
导出
摘要 提出了一种分带K-均值聚类的平面标靶定位方法。根据标靶与测站距离的限制条件,推导了较大噪声点的剔除公式,在整体最小二乘拟合平面的基础上增加了噪声点二次剔除的方法,对经过噪声点剔除的点云数据进行分带、聚类处理。同时,对每一带的聚类中心进行均值化处理,得到每一带的中心点,通过求取不同带中心的均值来确定标靶中心点。实验结果表明,分带K-均值聚类的平面标靶定位模型较适合于平面标靶同名点确定。 This paper presents planar target location methods based on zoning K-means clustering aiming at the impact of the noise points and missing data to planar target. The formula of elimination to larger noise points is derived based on the distance constraints between the target and the station. The second elimination of noise points is added to the paper on the basis of the Total Least-squares fit planar. The zoning and cluster of point cloud data is conducted after removing noise points, and the center of each zoning is determined by the mean processing of cluster center of each zoning. The target center is determined by calculating the mean of different zoning center. The experimental results demonstrate that the planar target location model based on the zoning K-means clustering is suited for the determined of the planar target conjugate.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第2期167-170,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(41174010 41074025) 精密工程与工业测量国家测绘地理信息局重点实验室开放基金资助项目(PF2011-17)
关键词 点云数据分带 K-均值聚类 噪声点去除 粗差剔除 平面标靶定位 point cloud data zoning K-means tion of gross errors planar target location clustering removal of noise points elimination of gross errors planar target location
  • 相关文献

参考文献8

  • 1Shakarji C M. Least-squares Fitting Algorithms of the NIST Algorithm Testing System[J].Journal of Research of the National Institute of Standards and Technology,1998.633-641.
  • 2Yuriy R,Milan H,Lars E S. Determination of the Optimal Diameter for Spherical Targets Used in 3D Laser Scanning[J].Survey Review,2005,(297):243-253.
  • 3官云兰,詹新武,程效军,周世健,张立亭.一种稳健的地面激光扫描标靶球定位方法[J].工程勘察,2008,36(10):42-45. 被引量:17
  • 4赵煦,周克勤,闫利,邓非.基于激光点云的大型文物景观三维重建方法[J].武汉大学学报(信息科学版),2008,33(7):684-687. 被引量:59
  • 5Lichit D D,Stewart M P,Tsakiri M. Benchmark Tests on a Three-dimensional Laser Scanning System[J].Geometrics' Research Australasia,2000.1-23.
  • 6Macqueen. Some Methods for Classification and Analysis of Multivariate Observations[A].United States of America,1967.
  • 7Soudarissanane S,Lindenbergh R,Menenti M. Scanning Geometry:Influencing Factor on the Quality of Terrestrial Laser Scanning Points[J].ISPRS Journal of Photogrammetry and Remote Sensing,2011.389-399.
  • 8张贤达.矩阵分析与应用[M]北京:清华大学出版社,2004.

二级参考文献13

  • 1李笑岚,孟放,冯洁,查红彬.基于几何模型与彩色图像融合的地质化石数字化[J].计算机科学,2002,29(z2):14-17. 被引量:2
  • 2罗德安,朱光,陆立,廖丽琼.基于3维激光影像扫描技术的整体变形监测[J].测绘通报,2005(7):40-42. 被引量:154
  • 3刘旭春,丁延辉.三维激光扫描技术在古建筑保护中的应用[J].测绘工程,2006,15(1):48-49. 被引量:122
  • 4尚涛,孔黎明.古代建筑保护方法的数字化研究[J].武汉大学学报(工学版),2006,39(1):72-75. 被引量:41
  • 5Lai J-Y, UengW-D, YaoC-Y. Registration and data merging for multiple sets of scan data .The International Journal of Advanced Manufacturing Technology, I999, 15(1):54-63.
  • 6Craig M.Shakarji, Least-squares fitting algorithms of the NIST algorithm testing system, Journal of research of the National Institute of Standards and Technology, 1998, vol.103:633-641.
  • 7Yuriy Reshetyuk, Milan Horemuz, Lars E.Sjoberg, Determination of the optimal diameter for spherical targets used in 3D laser scanning, Survey Review,2005, 38. (297) :243-253.
  • 8John Fox. Robust regression http://socserv.mcmaster.ca/jfox /BookslCompanion/appendix-robust-regression.pdf.Accessed:20 06, 10.
  • 9Lovell J L, Jupp D L B, Culvenor D S, et al. Using Airborne and Ground Based Ranging Lidar to Measure Canopy Structure in Australian Forests [J]. Can. J. Remote Sensing, 2003,29(5) :607-622.
  • 10Vosselman G,Gore B G H, Sithole G, et al. Recognising Structure in Laser Scanner Point Clouds, International Archives of Photogrammetry[J]. Remote Sensing and Spatial Information Sciences,2004,46(8/W2) : 33-38.

共引文献72

同被引文献53

  • 1刘珂,周富强,张广军.半径约束最小二乘圆拟合方法及其误差分析[J].光电子.激光,2006,17(5):604-607. 被引量:82
  • 2潘国荣,谷川,施贵刚.空间圆形物体检测方法与数据处理[J].大地测量与地球动力学,2007,27(3):28-30. 被引量:54
  • 3Bornaz L,Rinaudo F.Terrestrial laser scanner data process-ing[C].HG Working Week,2004.
  • 4Lichti d.Tests on a Ihree-dimensional laser scanning system [ EB/OL ].www.cage.curtin.edu.au/geogrp/WordDocs/scaneal.pdf,2000.
  • 5Theiler P W, Schindler K. Automatic registration of terrestrial laser scanner point clouds using natural planar surfaces[C]// XXII ISPRS Congress, Technical Commission III. Melbourne: Copernicus Publications, 2012: 173-178.
  • 6PU Shi, Vosselman G. Automatic extraction of building features from terrestrial laser scanning [J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, 36(5).. 25.
  • 7Schnabel R, Wahl R, Klein R. Efficient RANSAC for point- cloud shape detection[J]. Computer Graphics Forum, 2007, 26(2) : 214.
  • 8Zhang G, Karasev P, Brilakis I, et al. A sparsity-inducing optimization algorithm for the extraction of planar structures in noisy point-cloud data [C]// Proceedings of the 2012 ASCE International Conference on Computing in Civil Engineering. Clearwater Beach: ASCE Publications, 2012: 317-324.
  • 9Kaucic R, Hartley R, Dano N. Plane-based projective reconstruction[C]// Eighth IEEE International Conference on Computer Vision. Vancouver: IEEE, 2001: 420-427.
  • 10NAN Liangliang, Sharf A, ZHANG Hao, et al. Smart boxes for interactive urban reconstruction [ J ]. ACM Transactions on Graphics, 2010, 29(4): 1.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部