期刊文献+

认知无线网络中基于免疫克隆优化的功率分配 被引量:7

Power Allocation of Cognitive Wireless Network Based on Immune Clonal Optimization
下载PDF
导出
摘要 针对认知OFDM无线网络中下行链路的功率分配问题,将其建模为一个约束优化问题,进而提出了一种基于免疫克隆的求解方法。给出了功率分配的数学优化模型、算法实现过程和关键技术,设计了适合算法求解的编码、克隆、变异算子。仿真实验结果表明,在总发射功率、误码率及主用户可接受的干扰约束下,该算法可以获得更大的总数据传输率,同时具有较快的收敛速度,能够得到较优的功率分配方案,进而提高频谱利用效率。 The optimization of downlink power allocation of cognitive OFDM wireless network is converted into an optimization problem with constraints. An immune clonal algorithm is proposed to solve this problem. The power allocation model, key techniques, and implementation processes are described. The coding, clonal, and maturation operators are designed. The experiments results show that, with the constraints of total power, the bit error rate (BEg) and the acceptable interferences of primary user, the algorithm can maximizes the total transmit rate and converges rapidly. It can get the better power allocation scheme and improve the reuse of spectrum.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2013年第1期36-40,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61202099 61171081 61201175 61271207) 国家自然基金委-河南省人民政府人才培养联合基金(U1204618) 江苏省博士后科研项目(1202006C)
关键词 认知无线网络 约束 免疫克隆 OFDM 功率分配 cognitive wireless network constraints immune clone algorithm orthogonal frequency division multiple power allocation
  • 相关文献

参考文献11

二级参考文献121

共引文献145

同被引文献37

  • 1CHENG H D, JIANG X H, SUN Y, et al. Color image segmentation: Advances and prospects[J]. PatternRecognition, 2001, 34(12): 2259-2281.
  • 2TRANOS Z, OLUDAY O O, SUNDAY O O, et al. Image segmentation, available techniques, development and open issues[J]. Canadian Journal on Image processing and Computer Vision, 2011, 2(3): 20-29.
  • 3JA1N A K. Data clustering: 50 years beyond k-means[J]. Pattern Recognition Letters, 2010, 31 (8): 651-666.
  • 4HALDER A, PATHAK N. An evolutionary dynamic clustering based on colour image segmentation[J]. International Journal of Image Processing, 2011, 4(6): 549-556.
  • 5LIU Ruo-chen, JLAO Li-cheng, ZHANG Xiang-rong, et al. Gene transposon based clone selection algorithm for automatic clustering[J]. Information Science, 2012(204): 1 =22.
  • 6SANGHAMITRA B, UJJWAL M. Genetic clustering for automatic evolution of clusters and application to image classification[J]. Pattern Recognition, 2002, 35(6): 1197-1208.
  • 7CHANG Hong, YEUNG D Y. Robust path-based spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191-203.
  • 8JUNG C, JIAO Li-cheng. Image segmentation via manifold spectral clustering[C]//IEEE lntemational Workshop on Machine Learning for Signal Processing. [S.I.] IEEE, 2011: 1-6.
  • 9LOld H, MAO C, WANG D, et al. PWM optimization for three-level voltage inverter based on clonal selection algorithm[J]. IET Electric Power Application, 2007, 1(6): 870-878.
  • 10CHOU C H, SU, M C, LAI E. A new cluster measure and its application to image compression[J]. Pattern Analysis and Applications, 2004, 7(2): 205-220.

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部