期刊文献+

基于分解的三维Otsu运动车辆检测方法 被引量:1

Three-dimensional Otsu Moving Vehicle Detection Method Based on Decomposition
下载PDF
导出
摘要 在户外交通环境下,采用传统目标检测方法容易产生大量噪声,传统三维最大类间方差(Otsu)方法能消除噪声,但是不能满足实时性。为此,提出一种基于分解的三维Otsu运动车辆检测方法。通过隔帧对称差分法得到2个差分图像,对这2个差分图像采用基于分解的三维Otsu法进行阈值分割,对这2个二值图像在使用数学形态学滤波后,求交集得到运动车辆目标。实验结果表明,该方法在视频帧出现不规则抖动的情况下,能实时和精确地检测出运动车辆。 It is frequent to produce a large number of noise in the outdoor complex traffic environment by traditional object detection method.Traditional three-dimensional Otsu method can eliminate the effect of image noise,but can not satisfy the real-time demand.To solve the above problems,a method for three-dimensional Otsu moving vehicle detection based on decomposition is proposed.Two difference images are got by the method of interval frame symmetry differencing.Two binary images are obtained after using a method based on decomposition three-dimensional Otsu.Moving cars are got by seeking the common ground in these two binary images after filtering with mathematical morphology.Experimental results show that it can detect moving cars for real-time and accuracy in the case of jittering in the video frame.
出处 《计算机工程》 CAS CSCD 2013年第2期172-177,共6页 Computer Engineering
基金 浙江省自然科学基金资助项目(Y1080533)
关键词 运动目标检测 隔帧对称差分 数学形态学滤波 阈值分割 视频帧 moving object detection interval frame symmetry difference mathematical morphology filtering threshold segmentation video frame
  • 相关文献

参考文献10

二级参考文献68

共引文献273

同被引文献20

  • 1刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:357
  • 2汪海洋,潘德炉,夏德深.二维Otsu自适应阈值选取算法的快速实现[J].自动化学报,2007,33(9):968-971. 被引量:135
  • 3Shih F Y. Image Processing and Pattern Recognition: Fundamentals and Techniques [M]. Hoboken, USA : John Wiley & Sons,2010.
  • 4Nobuyuki O. A Threshold Selection Method from Gray- level Histogram [ J]. IEEE Transactions on System Man and Cybernetics, 1979,9 ( 1 ) :62-66.
  • 5Kapur J N,Sahoo P K,Wong A K C A. New Method for Gray-level Picture Thresholding Using the Entropy of the Histogram [ J ]. Computer Vision, Graphics, and Image Processing, 1985,29 ( 3 ) :273-285.
  • 6Ahmed A S. Automatic Thresholding of Gray-level Pictures Using Two-dimensional Entropy[J]. Computer Vision, Graphics, and Image Processing, 1989,47 ( 1 ) :22-32.
  • 7Huang Liangkai,Wang Maoyun. Image Thresholding by Minimizing the Measure of Fuzziness [ J ]. Pattern Recognition, 1995,28 ( 1 ) : 41-51.
  • 8Wang Qing, Chi Zheru, Zhao Rongchun. Image Thresholding by Maximizing the Index of Nonfuzziness of the 2-D Grayscale Histogram [ J ]. Computer Vision and Image Understanding, 2002,85 ( 1 ) : 100-116.
  • 9Xiao Yang, Cao Zhiguo, Zhuo Wen. Type-2 Fuzzy Thresholding Using GLSC Histogram of Human Visual Nonlinearity Characteristics [ J]. Optics Express, 2011, 19( 11 ) :10656-10672.
  • 10Sahoo P K, Arora G A. Thresholding Method Based on Two-dimensional Renyi' s Entropy [ J ]. Pattern Recogni- tion,2004,37 (6) :1149-1161.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部