期刊文献+

基于动态规划的汉语句子相似度算法 被引量:8

Chinese Sentence Similarity Algorithm Based on Dynamic Programming
下载PDF
导出
摘要 传统汉语句子相似度计算算法在处理大量专业词汇时准确率较低。为此,提出一种基于动态规划的汉语句子相似度算法。通过获取2个句子的公共子串集合,结合链表消重机制,从集合中获取2个句子的所有最长公共子串,并以此计算相似度。实验结果表明,对于含有大量专有名词的问题集合,该算法的测试正确率达93.6%,计算效率较高。 Traditional Chinese sentence computing algorithm has a lower accuracy in dealing with a large number of professional vocabulary.In order to solve this problem,this paper proposes a Chinese sentence similarity algorithm based on dynamic programming.By getting the common sub-string collection of two sentences,it combines the mechanism for duplicate elimination by linked list,and obtains all of the longest common sub-string of two sentences for computing similarity.Experimental results show that for the problem sets which contain a lot of proper nouns,the test accuracy of this algorithm is 93.6%,and has high computational efficiency.
出处 《计算机工程》 CAS CSCD 2013年第2期220-224,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61103101) 教育部人文社会科学研究基金资助项目(12YJCZH201)
关键词 句子相似度 动态规划 自动问答 最长公共子串 消重链表 sentence similarity dynamic programming automatic question-answer longest common substring duplicate elimination linked list
  • 相关文献

参考文献10

二级参考文献39

  • 1王常亮,滕至阳.语句相似度计算在FAQ中的应用[J].计算机时代,2006(2):24-26. 被引量:10
  • 2周文,刘宗田,陈慧琼.FCA与本体结合研究的综述[J].计算机科学,2006,33(2):8-12. 被引量:20
  • 3朱靖波,王宝库,姚天顺.一种规则描述语言NPRDL语言[J].东北大学学报(自然科学版),1996,17(6):651-655. 被引量:1
  • 4Kobayashi M,Malassis L,Samukawa H.Retrieval and ranking of documents from a database[M].U S Patent,2000-06
  • 5Andrea Rodriguez M,Max Egenhofer J.Determing Semantic Similarityamong Entity Classes from Different Ontologies[J].IEEE Transactions on Knowledge and Data Engineering,2003; (2):442~456
  • 6Yuhua Li,Zuhair Bandar A,David McLean.An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources.Ontologies[J].IEEE Transactions on Knowledge and Data Engineering,2003;(4 ):871~881
  • 7Lin D.An Information-Theoretic Definition of Similarity[C].In:Proc Int'l Conf Machine Learning(CIKM'98),1998
  • 8Dermatas E,Kokkinakis G.Automatic stochastic tagging of natural language texts[J].Conputational Linguistics,1995,21(2):137-163.
  • 9Deerwester S,Dumais S T,Harshman R,et al.Indexing by latent semantic analysis[J].Journal of the American Society for Information Science,1990,41 (6):391-407.
  • 10[1]Studer R,Benjamins V R,Fensel D,et al. Knowledge engineering,principles and methods [J]. Data and Knowledge Engineering, 1998,25 (1-2): 161 - 197.

共引文献235

同被引文献94

引证文献8

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部