期刊文献+

非自治共振二阶离散Hamilton系统的周期解 被引量:1

Periodic solutions for nonautonmous second order discrete Hamiltonian system at resonant
下载PDF
导出
摘要 研究了非自治二阶离散Hamilton系统周期解的存在性问题。在非线性项是次线性增长时,将这类Hamil-ton系统的周期解转化为定义在一个适当空间上泛函的临界点,然后利用临界点理论建立了此类系统周期解的存在性结果。 In this paper, we investigate the existence of periodic solutions for second order nonautonomous discrete Hamihonian system with sublinear nonlinearity, we convert periodic solutions of the system into the critical points of a functional defined on a proper space, and prove that there existence of periodic solutions by critical point theory.
作者 张申贵
出处 《贵州师范大学学报(自然科学版)》 CAS 2013年第1期48-52,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 国家自然科学基金(31260098) 西北民族大学中青年科研项目(12XB38)
关键词 二阶离散Hamilton系统 次线性增长 周期解 临界点 second order discrete Hamihonian system sublinear condition periodic Solutions critical point
  • 相关文献

参考文献9

  • 1郭志明,庾建设.二阶超线性差分方程周期解与次调和解的存在性[J].中国科学(A辑),2003,33(3):226-235. 被引量:31
  • 2Bin H H,Yu J S,Guo Z M. Nontrival periodic solutions for asymptotically linear resonant difference problem[J].Journal of Mathematical Analysis and Applications,2006,(02):419-430.
  • 3贺铁山,陈文革.二阶离散Hamiltonian系统的多重周期解[J].数学的实践与认识,2008,38(17):179-185. 被引量:5
  • 4Xue Y F,Tang C L. Existence of a periodic solutions for Subquadratic second order discrete Hamiltonian systems[J].Nonlinear Analysis,2007,(07):2072-2080.doi:10.1016/j.na.2006.08.038.
  • 5Deng Xiaoqing. Periodic Solutions of second order discrete Hamiltonian systems with potential indefinite in sign[J].Applied Mathematics and Computation,2011,(12):148-156.
  • 6He T S,Lu Y M. Nontrivial periodic solutions for nonlinear second-order difference equations[J].Discrete Dynamics in Nature and Society,2011,(03):1-14.
  • 7张恭庆.临界点理论及其应用[M]上海:上海科学技术出版社,1986.
  • 8Mawhin J,Willem M. Critical point theory and Hamiltonian systems[M].New York:Springer-verlag,1989.
  • 9伍芸,何少通.含Sobolev-Hardy临界项的椭圆方程解的存在性[J].贵州师范大学学报(自然科学版),2012,30(3):47-51. 被引量:1

二级参考文献41

  • 1Xue Y F, Tang C L. Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system[J].Nonlinear Anal, 2007,67 (7):2072-2080.
  • 2Xue Y F, Tang C L. Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems[J]. Appl Math Comput, 2008,196 (2) : 494-500.
  • 3Zhou Z, Yu J S, Guo Z M. Periodic solutions of higher-dimensional discrete systems[J].Proc Roy Soc Edinburgh Sect A,2004,134(3) :1013-1022.
  • 4Yu J S, Guo Z M, Zou X F. Periodic solutions of second order self-adjoint difference equations[J].J London Math Soc, 2005,71 (2) : 146-160.
  • 5Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations[M]. New York: CBMS Reg Conf Ser in Math 65,1986.
  • 6Clark D C. A variant of the Liusternik-Schnirelman theory [J].Indiana Univ Math J,1972,22(1):65-74.
  • 7Guo Z M, Yu J S. The existence of periodic and subharmonic solutions of subquadratic second order difference equations[J]. J London Math Soc, 2003,68(2) :419-430.
  • 8Bin H H, Yu J S, Guo Z M. Nontrivial periodic solutions for asymptotically linear resonant difference problem [J]. J Math Anal Appl, 2006,322 ( 1 ) : 477-488.
  • 9Hale J K, Mawhin J. Coincidence degree and periodic solutions of neutral equations. J Differential Equations,1974, 15:295-307.
  • 10Elaydi S N. An Introduction to Difference Equations. New York: Springer-Verlag, 1999.

共引文献30

同被引文献12

  • 1孟海霞,郭晓峰.一类共振二阶系统的多重周期解[J].华东师范大学学报(自然科学版),2006(1):40-44. 被引量:1
  • 2OU Zengqi’TANG Chunlei. Periodic and Subharmonic Solutions for a Class of Superquadratic Hamiltonian Systems[J].Nonlinear Analysis TMA, 2004,58(3) :245 - 258.
  • 3TANG Chunlei. A Note on Periodic Solutions of Second Order Systems[J]. Proc. Amer. Math. Soc. ,2003,132 :1 295 -1393.
  • 4ZHANG Xingyong, TANG Xianhua. Periodic Solutions for an Ordinary ^-Laplacian System [J], Taiwan Residents Journal ofMathematics,2011,15(3):1 369 - 1 396.
  • 5JEAN MAWHIN. Critical Point Theory and Hamiltonian Systems[M]. New York:Springer Verlag,1989.
  • 6ZHAO Fukun,WU Xian. Existence of Periodic Solutions for Nonautonmous Second Order Systemswith Linear Nonlin-earity[J], Nonlinear Anal. ,2005,60(7) :325 - 335.
  • 7TANG Chunlei. Periodic Solutions for Second Order Systems with Sublinear Nonlinearity[J]. Proceedings of the Ameri-can Mathematical Society, 1998?126 : 3 263 - 3 270.
  • 8HAN Zhiqing. Existence of Periodic Solutions of Linear Hamiltonian Systems with Sublinear Perturbation[J], BoundaryValue Problems,2010,12:123 - 131.
  • 9TANG Xianhua, XIAO Li. Homoclinic Solutions for a Class of Second Order Hamiltonian Systems[J〕. Nonlinear Anal-sis,2009,71(3):1 140 - 1 151.
  • 10CHANG K C. Infinite Dimensional Morse Theory and Multiple Solution Problems[M]. Boston:Birkhauser, 1993.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部