期刊文献+

CEV模型下有随机工资DC型养老金的最优投资 被引量:12

Optimal Investment for DC Pension with Stochastic Salary under a CEV Model
下载PDF
导出
摘要 针对风险资产服从常方差弹性(CEV)模型,研究考虑随机工资的确定缴费型养老金的最优投资问题.在模型中,养老基金被允许投资于一种无风险资产和一种风险资产.在对数效用函数下,通过建立相应问题的HJB方程,利用Legendre转换和对偶理论等对问题进行分析,给出了问题的显性解,并对结果进行了相关分析,从而为养老金管理者提供了有效的决策依据. This paper studies the optimal investment of the DC pension plans under a constant variance elasticity (CEV) model with stochastic salary. In the model, the pension funds are allowed to invest in a risk-free asset and risky asset. Under the logarithmic utility function, by applying the HJB equation, Legendre conversion and duality theory, we achieve the explicit solutions and carry out the correlation analysis which provides decision-making basis for the pension fund management.
出处 《工程数学学报》 CSCD 北大核心 2013年第1期1-9,共9页 Chinese Journal of Engineering Mathematics
基金 天津市自然科学基金(09JCYBLJC01800) 天津市高等学校科技发展基金(20100821) 天津财经大学优秀青年学者计划(2012)~~
关键词 确定缴费型养老金 随机控制 常方差弹性 随机工资 最优投资 defined contribution pension stochastic control constant elasticity of variancemodel stochastic salary optimal investment
  • 相关文献

参考文献20

  • 1Boulier J F,Huang S,Taillard G. Optimal management under stochastic interest rates:the case of a protected defined contribution pension fund[J].{H}Mathematics in Economics,2001,(02):173-189.
  • 2Deelstra G,Grasselli M,Koehl P F. Optimal investment strategies in the presence of a minimum guaran-tee[J].{H}Mathematics in Economics,2003,(01):189-207.
  • 3Battocchio P,Menoncin F. Optimal pension management in a stochastic framework[J].{H}Mathematics in Economics,2004,(01):79-95.
  • 4Cairns A J G,Blake D,Dowd K. Stochastic lifestyling:optimal dynamic asset allocation for defined contribution pension plans[J].{H}Journal of Economic Dynamics and Control,2006,(05):843-877.
  • 5Gao J. Stochastic optimal control of DC pension funds[J].{H}Mathematics in Economics,2008,(03):1159-1164.
  • 6Dennis P,Mayhew S. Risk-neutral skewness:evidence from stock options[J].{H}Journal of Financial and Quantitative Analysis,2002,(03):471-493.
  • 7Cox J C. Notes on option pricing I:constant elasticity of variance diffusions[R].{H}Stanford University,1975.
  • 8Cox J C,Ross S A. The valuation of options for alternative stochastic processes[J].{H}Journal of Financial Economics,1976,(1-2):145-166.
  • 9Cox J C. The constant elasticity of variance option pricing model[J].The Journal of Portfolio Management,1996,(01):16-17.
  • 10Yuen K C,Yang H,Chu K L. Estimation in the constant elasticity of variance model[J].British Actuarial Journal,2001,(02):275-292.

同被引文献69

  • 1肖建武,尹少华,秦成林.养老基金投资组合的常方差弹性(CEV)模型和解析决策[J].应用数学和力学,2006,27(11):1312-1318. 被引量:16
  • 2叶燕程,高随祥.缴费确定型企业年金最优投资策略研究[J].中国科学院研究生院学报,2007,24(2):149-153. 被引量:10
  • 3Browne S. Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin. Mathematics Methods Operator Research, 1995, 20(4): 937-957.
  • 4Yang H, Zhang L. Optimal investment for insurer with jump-diffusion risk process. Insurance: Mathematics and Economies, 2005, 37(3): 21-51.
  • 5Bai L, Guo J. Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint. Insurance: Mathematics and Economics, 2008, 42(3): 968-975.
  • 6Xie S X. Continuous-time portfolio selection with liability and regime switching. Insurance: Math- ematical and Economics, 2009, 45(1): 148-155.
  • 7Markowitz H M. Portfolio section. Journal of Finance, 1952, 7(1): 77-91.
  • 8Zhou X Y, Li D. Continuous-time meanvariance portfolio selection with rergime switching: A stochastic LQ framework. Applied Mathematics and Optimization, 2000, 42(1): 19-33.
  • 9Li D, Ng W L. Optimal dynamic portfolio selection: Multi-period mean-variance formulation. Mathematics Finance, 2000, 10(3): 387-406.
  • 10Zhou X, Yin G. Markowitz's mean-variance portfolio selection with rergime switching: A continuous-time model. SIAM Journal on Control and Optimal, 2003, 42(4): 1466-1482.

引证文献12

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部