期刊文献+

一类求解波动方程的加速Schwarz波形松弛方法 被引量:1

An Acceleration Method of Schwarz Waveform Relaxation for Wave Equations
下载PDF
导出
摘要 波动方程在声学、电磁学和流体动力学等领域上有着广泛的应用.本文针对波动方程,研究了一类新的Schwarz波形松弛方法.经典Schwarz波形松弛方法是一种迭代方法,在求解波动方程时,特别是当子区域间的重叠量特别小的情形下,迭代次数往往较多,计算量较大.而本文构造的加速Schwarz波形松弛方法,即AitkenSchwarz波形松弛方法与Steffensen Schwarz波形松弛方法,是一种直接方法,它通过构造子区域边界信息的映射矩阵,很大程度地提升了计算性能.文中分别分析了这两种方法的收敛性,并且验证了新方法对于波动方程的可行性.数值算例证实了方法的有效性. Wave equations are very important in the areas of acoustic, electromagnetic and fluid dynamics. In this paper, we present a new Schwarz waveform relaxation method for wave equations. The classical Schwarz waveform relaxation method, which is an iterative method, costs great, especially when the overlap is very small. While the new Schwarz waveform re- laxation methods constructed in this paper, named Aitken acceleration method and Steffensen acceleration method, are direct methods. The new acceleration methods involves mapping matrices on boundary information of sub-domains, which helps improve the computational ef- ficiency. We first analyze the convergence of the two methods, which indicates the feasibility of the methods for wave equations, and then use numerical experiments to verify the effectiveness of our methods.
出处 《工程数学学报》 CSCD 北大核心 2013年第1期29-39,共11页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(11071192) 国家科技部国际合作项目(2010DFA14700) 中央高校基本科研业务费项目(XJJ20100107) 陕西省自然科学基础研究计划(SJ08E226)~~
关键词 Aitken加速方法 Steffensen加速方法 Schwarz波形松弛方法 波动方程 Aitken acceleration method Steffensen acceleration method Schwarz waveformrelaxation wave equation
  • 相关文献

参考文献18

  • 1蒋耀林.波形松弛方法[M]{H}北京:科学出版社,2009.
  • 2Toselli A,Widlund O. Domain Decomposition Methods-Algorithms and Theory[M].{H}Berlin:Springer-Verlag,2005.
  • 3Gander M J,Stuart A M. Space-time continuous analysis of waveform relaxation for the heat equation[J].SIAM Journal on Numerical Analysis,1998,(06):2014-2031.
  • 4Gander M J,Halpern L,Nataf F. Optimal convergence for overlapping and non-overlapping Schwarz wave-form relaxation[A].1999.
  • 5Gander M J,Halpern L. Absorbing boundary conditions for the wave equation and parallel computing[J].{H}Mathematics of Computation,2004,(249):153-176.
  • 6Gander M J,Zhao H. Overlapping Schwarz waveform relaxation for the heat equation in n-dimensions[J].{H}BIT,2002,(04):779-795.
  • 7Gander M J,Halpern L,Nataf F. Optimal Schwarz waveform relaxation for the one dimensional wave equation[J].SIAM Journal on Numerical Analysis,2003,(05):1643-1681.doi:10.1137/S003614290139559X.
  • 8Jiang Y L,Zhang H. Schwarz waveform relaxation methods for parabolic equations in space-frequency domain[J].{H}Computers & Mathematics with Applications,2008,(12):2924-2933.
  • 9张辉,蒋耀林.抛物型时间周期问题的Schwarz波形松驰方法[J].中国科学:数学,2010,40(5):497-516. 被引量:4
  • 10Ltaief H,Garbey M. A parallel Aitken-additive Schwarz waveform relaxation suitable for the grid[J].{H}Parallel Computing,2009,(07):416-428.

二级参考文献20

共引文献4

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部