期刊文献+

Lagrange函数方向导数的简化表示 被引量:1

A Simplified Expression for Directional Derivative of Lagrangian Function
下载PDF
导出
摘要 本文对n维欧氏空间中的极小化问题展开研究,讨论其Lagrange对偶的部分基本性质,得出了关于Lagrange对偶函数的两个新结果.首先证明在一般非空集合中,必定存在某一元素可用来表示该对偶函数在任何一点的方向导数;然后,在此基础上得到了相比一个原相关经典定理更单纯、更直接,集合所含元素为同类型次梯度的结果,从而将Lagrange对偶函数的方向导数表示进一步简化. This paper investigates the minimization problem in n^dimensional Euclidean space, and analyzes some basic properties of the Lagrangian dual of the problem. Two new results on the Lagrangian dual function are further obtained. We first prove that there exists the element in an arbitrary nonempty set which can be utilized to formulate the directionM derivative of the Lagrangian dual function at any given point. And then we obtain a simpler and more straight- forward conclusion that there only exists the same type of subgradients compared with that in a classic result. The mathematical expression of the directional derivative of the Lagrangian function is thus simplified.
作者 黄正刚 吴永
出处 《工程数学学报》 CSCD 北大核心 2013年第1期86-90,共5页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(50573095)~~
关键词 Lagrange对偶问题 对偶函数 方向导数 次梯度 Lagrangian dual problem dual function directional derivative subgradient
  • 相关文献

参考文献6

  • 1Bazaraa M,Sherali H,Shetty C. Nonlinear Programming,Theory and Applications (2nd Edition)[M].{H}New York:Wiley,1994.
  • 2Kiwiel K C. Generalized Bregman projections in convex feasibility problems[J].{H}Journal of Optimization Theory and Applications,1998,(01):139-157.
  • 3Philip W. A method of conjugate subgradients for minimizing nondifferentiable functions[J].Mathematic Programming Study,1975.145-173.
  • 4Kiwiel K C. Improved convergence result for the discrete gradient and secant methods for nonsmooth optimization[J].{H}Journal of Optimization Theory and Applications,2010,(01):69-75.
  • 5Hu H,Wang Q. Closedness of a convex cone and application by means of the end set of a convex set[J].{H}Journal of Optimization Theory and Applications,2011,(03):633-645.
  • 6Tzallas-Regas G,Rustem B. Switching stepsize strategies for sequential quadratic programming[J].{H}Journal of Optimization Theory and Applications,2011,(02):269-292.

同被引文献14

  • 1高岳林,尚有林,张连生.解带有二次约束非凸二次规划问题的一个分枝缩减方法(英文)[J].运筹学学报,2005,9(2):9-20. 被引量:10
  • 2黄红选,梁治安.全局优化引论[M].北京:清华大学出版社,2003.
  • 3NOWAK I, VIGERSKE S. LaGO.. a (heuristic) branch and cut algorithm for nonconvex MINLPs EJ~. Central European Journal of Operations Re- search, 2008,16(2) : 127-138.
  • 4WESTRLUND T, SKRIFVARS H, HARJUNKOS- KI I, et al. An extended cutting plane method for solving a class of non-convex minlp problems['J-]. Computers and Chemical Engineering, 1998,22 ( 3 ) : 357-365.
  • 5WESTERLUND T, PETTERSSON F. A cutting plane method for solving convex minlp mproblems EJ~. Computers and Chemical Engineering, 1995,19 (1) ..t31-136.
  • 6WESTERLUND T, PC)RN R. Solving pseudo-con- vex mixed integer problems by cutting plane tech- niques[-Jl. Optimization and Engineering, 2002, 3 (3) :253-280.
  • 7PORN R, WESTERLUND T. A cutting plane meth- od for minimizing pseudo-convex functions in the mixed-integer caseEJ~. Computers and Chemical En- gineering, 2000,24 (12) : 2655-2665.
  • 8CLAUS Still, WESTERLUND T. Solving convex MINLP optimization problems using a sequential cutting plane algorithm[-J~. Computational Optimi- zation and Applicatons, 2006,34 (1) .. 63-83.
  • 9STUBBS R A, MEHROTRA S. A branch-and-cut method for 0-1 mixed convex programming[J]. Mathematical Programming, 1999,86 (3) : 515-532.
  • 10BIRHAUSER V. Relaxation and Decomposition Methods for Mixed Integer Nonlinear Programming [J]. Computational Optimization and Applications, 2005,26(9) :61-93.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部