期刊文献+

压缩感知框架下的太阳图像重建方法 被引量:2

Research on the solar image reconstruction method based on compressive sensing
下载PDF
导出
摘要 研制对日成像天线阵的主要困难体现在有限的预算和天线数目之间的矛盾,如何减少天线数目即降低采样率是重要目标之一.鉴于压缩感知理论能够以远低于奈奎斯特采样定律要求的数据恢复出原始信号和太阳图像的稀疏性,提出了基于压缩感知框架的太阳图像重建方法.通过仿真太阳图像和实际天文图像的成像实验例证了方案的有效性,表明在天线阵天线元数目和阵型确定的情况下,该方案在对相邻点源的分辨能力、对展源的保形能力以及动态范围方面有较优的性能. One of the important goals of the developing antenna array of solar imaging is how to decrease the cell number of the array,due to the contradiction between limited budget and massive antennas.Inspired by the ability of compressed sensing to recover exactly the original signal from highly sub-Nyquist-rate samples and the sparse characters of solar image,this paper proposes a solar image reconstruction method based on the compressive sensing theory.The effectiveness of this scheme is illustrated by experiments of both simulated solar image and real astronomical image.Results show superiority of the proposed method in the resolution of the adjacent point source,the shape maintenance of the extanded source and the dynamic range.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第1期76-80,共5页 Journal of Xidian University
基金 国家自然科学青年基金资助项目(61100156) 中央高校基本科研业务费专项资金资助项目(K50511030007) 国家自然科学基金资助项目(61070143)
关键词 图像重建 压缩感知 综合孔径 天线阵配置 image reconstruction compressive sensing synthetic aperture array configuration
  • 相关文献

参考文献16

  • 1王书振,张昕,徐国华.改进最大熵算法重建日像仪太阳图像[J].中国科学院研究生院学报,2005,22(6):685-689. 被引量:1
  • 2Frieden B R. Restoring with Maximum Likelihood and Maximum Entropy[J].Washington,DC:Optical Society of America,1972,(04):511-518.
  • 3Cornwell T J,Evans K F. A Simple Maximum Entropy Deconvolution Algorithm[J].Astronomy and Astrophysics,1985,(01):77-83.
  • 4Jackett C J,Turner P J,Lovell J L. Deconvolution of MODIS Imagery Using Multiscale Maximum Entropy[J].Remote Sensing Letters,2011,(03):179-187.
  • 5Schwarz U J. The Method 'CLEAN'-Use,Misuse and Variations[A].Netherlands:Astrophysics and Space Science Library,1978.261-269.
  • 6Clark B G. An Efficient Implementation of the Algorithm 'CLEAN'[J].Astronomy and Astrophysics,1980,(03):377-378.
  • 7Donoho D L. Compressed Sensing[J].IEEE Transactions on Information theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582.
  • 8Candés E. Compressive Sampling[A].Madrid:American Mathmatical Society,2006.1433-1452.
  • 9Candés E,Tao T. Near Optimal Signal Recovery from Random Projections:Universal Encoding Strategies[J].IEEE Transactions on Information theory,2006,(12):5406-5425.
  • 10Tsaig Y,Donoho D. Extensions of Compressed Sensing[J].Signal Processing,2006,(03):549-571.doi:10.1016/j.sigpro.2005.05.029.

二级参考文献19

  • 1Cuomo K M, Piou J E, Mayhan J T. Ultrawide-band Coherent Processing [J]. IEEE Trans on Antennas Propag, 1999, 47(6) : 1094-1107.
  • 2Potter L C, Arun K S. Energy Concentration in Band-limited Extrapolation [J]. IEEE Trans on Acoustics Speech and Signal Processing, 1989, 37(7): 1027-1041.
  • 3Li H J, Farhat N, Shen Y. A New Iterative Algorithm for Extrapolation of Data Available in Multiple Restricted Regions with Application to Radar Imaging [J]. IEEE Trans on AP, 1987, 35(5) : 581 -588.
  • 4Donoho D L. Compressed Sensing [J]. IEEE Trans on Info Theory, 2006, 52(4) : 1289-1306.
  • 5Zhu Chenwei. Stable Recovery of Sparse Signals Via Regularized Minimization [J]. IEEE Trans on Info Theory, 2008, 54(7) : 3364-3367.
  • 6Zhang Lei, Xing Mengdao, Qiu Chenwei. Achieving Higher Resolution ISAR Imaging with Limited Pulses Via Compressed Sampling [J]. IEEE GRS Letter, 2009, 6(3) : 567 -571.
  • 7Rauhut H, Schnass K, Vandergheynst P. Compressed Sensing and Redundant Dictionaries [J]. IEEE Trans on Info Theory, 2008, 54(5): 2210-2219.
  • 8Candes E. The Restricted Isometry Property and Its Implications for Compressed Sensing [J]. Comptes Rendus Mathematique, 2006, 246(9): 589-592.
  • 9Candes E, Romberg J, Tao T. Stable Signal Recovery from Incomplete and Inaccurate Measurements [J]. Communications on Pure and Applied Mathematics, 2005, 59(8) : 1207-1223.
  • 10Herman M, Strohmer T. High-Resolution Radar via Compressed Sensing [J]. IEEE Trans on Signal Processing, 2009, 57(6) : 2275-2284.

共引文献26

同被引文献23

  • 1杨晓敏,吴炜,干宗良,严斌宇,张莹莹.一种基于稀疏字典和残余字典的遥感图像超分辨重建算法[J].四川大学学报(工程科学版),2015,47(3):71-76. 被引量:5
  • 2Weissleder R, Pitter M J. Imaging in the Era of Molecular Oncology [J]. Nature, 2008, 452(7187): 580-589.
  • 3Chen D M, Zhu S P, Yi H J, et al. Cone Beam X-ray Luminescence Computed Tomography: a Feasibility Study [J]. Medical Physics, 2013, 40(3): 031111.
  • 4Candes E J. Compressive Sampling [C]//Proceedings of International Congress of Mathematics. Madrid: European Mathematical Society, 2006: 1433-1452.
  • 5Candes E J, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 6Sidky E Y, Kao C M, Pan X. Accurate Image Reconstruction from Few-views and Limited-angle Data in Divergent-beam CT [J]. Journal of X-ray Science and Technology, 2006, 14(2): 119-139.
  • 7Sidky E Y, Pan X. Image Reconstruction in Circular Cone-beam Computed Tomography by Constrained, Total-variation Minimization [J]. Physics in Medicine and Biology, 2008, 53(17): 4777-4807.
  • 8Candes E, Romberg J, Tao T. Stable Signal Recovery from Incomplete and Inaccurate Measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.
  • 9Kudo H, Suzuki T, Rashed E A. Image Reconstruction for Sparse-view CT and Interior CT-introduction to Compressed Sensing and Differentiated Backprojection [J]. Quantitative Imaging in Medicine and Surgery, 2013, 3(3): 147-161.
  • 10Ritschl L, Bergner F, Fleischmann C, et al. Improved Total Variation-based CT Image Reconstruction Applied to Clinical Data [J]. Physics in Medicine and Biology, 2011, 56: 1545-1561.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部