期刊文献+

一种基于蚁群算法和互信息测度的图像拼接技术 被引量:12

An Image Mosaic Technology Based on Ant Colony Algorithm and Mutual Information Measure
下载PDF
导出
摘要 以图像间的互信息为基础,通过计算图像的信息熵来获得2幅图像的匹配区域。利用互信息量测度函数作为蚁群算法的适应值函数,通过蚁群迭代寻找最优的匹配区域。与SIFT拼接算法进行比对实验。实验结果表明,本文算法具有良好的拼接效果和较高的拼接效率。 Image mosaic can obtain greater vision and improve image resolution by stitching algorithm mainly. It has broad application prospects and commercial value at present. In this paper, we can get the matching area of the two images by calculating the comentropy based on the mutual information between images. Then, we used the mutual information measure function as the fitness function of ACA and found the optimal matching region by iteration. Finally, compared with stitching method based on SIFT features by using a series of mosaic experiments, the result showed that the proposed algorithm has better stitching effect and higher splicing efficiency.
出处 《重庆理工大学学报(自然科学)》 CAS 2013年第1期76-81,共6页 Journal of Chongqing University of Technology:Natural Science
关键词 互信息 蚁群算法 图像拼接 mutual information ant colony algorithm image mosaic
  • 相关文献

参考文献11

  • 1许建宁.图像拼接技术研究[D]西安:西安电子科技大学,2006.
  • 2Heung Yeung Shum. Rendering with concentric mosaics[A].United States of America,1999.8-13.
  • 3Richard Szeliski,Shum Heung-yeung. Creating full view panoramic image mosaics and environment maps[A].United States of America,1997.251-258.
  • 4Brown M,Lowe D G. Recognizing Panoramas[A].United States of America,2003.1218-1225.
  • 5Brown L G. A survey of image registration techniques[J].ACM Computing Surveys,1992,(04):325-376.
  • 6Zitova B,Flusser J. Image registration methods:a survey[J].Image and Vision Computing,2003,(11):977-1000.
  • 7吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301. 被引量:40
  • 8程兵,王莹,郑南宁,贾新春,袁泽剑,李青,卞正中.基于Markov随机场和FRAME模型的无监督图像分割[J].中国科学(E辑),2004,34(4):391-400. 被引量:9
  • 9蜻瑜.多传感器图像融合方法研究及实现[D]哈尔滨:哈尔滨工业大学,2006.
  • 10阮宗才,梁栋,吴福朝,韦穗.一种自动全景拼图的快速算法[J].计算机研究与发展,2001,38(5):536-539. 被引量:6

二级参考文献29

  • 1Feng Y.,Chen W..Brain MR image segmentation using fuzzy clustering with spatial constraints based on Markov random field theory.In:Proceedings of MIAR 2004 (LNCS 3150),2004,188~ 195.
  • 2Yang F.,Jiang T..Pixon-based image segmentation with Markov random fields.IEEE Transactions on Image Processing,2003,12(12):1552~1559.
  • 3Zhang Y.,Brady M.,Smith S..Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm.IEEE Transactions on Medical Imaging,2001,20(1):45~57.
  • 4Maes F.,Collignon A..Multimodality image registration by maximization of mutual information.IEEE Transactions on Medical Imaging,1997,16(2):187~198.
  • 5Kim J.,Fisher J.W.,Yezzi A.et al..Nonparametric methods for image segmentation using information theory and curve evolution.In:Proceedings of ICIP 2002,New York,2002,797~800.
  • 6Rigau J.,Feixas M.,Sbert M.etal..Medical image segmentation based on mutual information maximization.In:Proceedings of MICCAI 2004,Saint-Malo,France,2004,135~142.
  • 7Kim J.,Fisher J.W.,Cetin M.et al..Incorproating complex statistical information in active contour -based image segmentation.In:Proceedings of ICIP 2003,Bercelona,Spain,2003,655~658.
  • 8Akaike H..A new look at the statistical model identification.IEEE Transactions on Automatic Control,1974,19(6):716~723.
  • 9Kirkpatrick S.,Gelatt C.D.,Vecchi M.P..Optimization by simulated annealing.Science,1983,220:671~680.
  • 10Yuan B,SPIE 3545,1998年,304页

共引文献50

同被引文献105

引证文献12

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部