摘要
This paper is focused on the structural behavior of the single shear bolted connections with thin-walled ferritic stainless steel.The purpose of this study is to investigate the ultimate behaviors,such as ultimate strength and fracture mode of the single shear bolted connections of thin-walled ferritic stainless steel(low cost steel) rather than austenitic stainless steel(high cost steel).Bolt arrangement and end distance parallel to the direction of applied load are considered as main variables of the test specimens for bolted connections.Specimens have a constant dimension of edge distance perpendicular to the loading direction,bolt diameter,pitch,and gauge.A monotonic tensile test for specimens has been carried out and some bolted connections with long end distance showed curling(out of plane deformation) occurrence which led to strength reduction.The ultimate behaviors such as fracture mode,ultimate strength are compared with those predicted by current design codes.Further,conditions of curling occurrence and the strength reduction due to curling are investigated and modified strength equations are suggested considering the curling effect.
This paper is focused on the structural behavior of the single shear bolted connections with thin-walled ferritic stainless steel. The purpose of this study is to investigate the ultimate behaviors, such as ultimate strength and fracture mode of the single shear bolted connections of thin-walled ferritic stainless steel (low cost steel) rather than austenitic stainless steel (high cost steel). Bolt arrangement and end distance parallel to the direction of applied load are considered as main variables of the test specimens for bolted connections. Specimens have a constant dimension of edge distance perpendicular to the loading direction, bolt diameter, pitch, and gauge. A monotonic tensile test for specimens has been carried out and some bolted connections with long end distance showed curling (out of plane deformation) occurrence which led to strength reduction. The ultimate behaviors such as fracture mode, ultimate strength are compared with those predicted by current design codes. Further, conditions of curling occurrence and the strength reduction due to curling are investigated and modified strength equations are suggested considering the curling effect.
基金
Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education,Science and Technology(MEST)(No.2012-00-2110)
the Sustainable Building Research Center of Hanyang University funded by the SRC/ERC Program of MEST(No.2012-0000-723)