期刊文献+

媒介具有Logistic增长的WNV模型动力学性态分析

Dynamics Analysis of a WNV Model with Logistic Growth of Vector
下载PDF
导出
摘要 建立了宿主具有常数出生率以及蚊子具有Logistic增长的西尼罗河病毒(WNV)的传染病模型.利用van den Driessche和Watmough的方法,得到了模型的基本再生数,进而讨论了平衡点的存在性和稳定性,并且证明了当因病死亡率大于恢复率时,若基本再生数大于1,则系统存在唯一的正平衡点且是局部渐近稳定的,若基本再生数小于1,则系统存在两个正平衡点,其中一个为鞍点.当因病死亡率小于恢复率时,若基本再生数大于1,则系统存在唯一的正平衡点且是局部渐近稳定的,若基本再生数小于1,则系统不存在正平衡点. The WNV epidemic model with constant birth rate for host and Logistic growth for mosquito was built.The basic reproduction number of the model was obtained by using the method of van den Driessche and Watmough,and the existence and stability of equilibria were discussed.Then the results of the study show that when disease-induced death rate is greater than recovery rate,if the basic reproduction number is greater than 1,then the system has a unique epidemic equilibrium and is locally asymptotically stable,if the basic reproduction number is less than 1,then the system have two epidemic equilibria,one of them is a saddle point;when disease-induced death rate is less than recovery rate,if the basic reproduction number is greater than 1,then the system has a unique epidemic equilibrium and is locally asymptotically stable,if the basic reproduction number is less than 1,there is no endemic equilibrium.
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第1期5-9,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11147015)
关键词 西尼罗河病毒 平衡点 稳定性 后向分支 west nile virus equilibria stability backward bifurcation
  • 相关文献

参考文献15

  • 1Smithburn K C, Hughes T P, Burke A W, et al. A neurotropic virus isolated from a blood of native of uganda[J]. AM. J. Trop. Med. , 19:0, 20: 471.
  • 2Gustavo Cruz-Pacheo, Lourder Esteva, Juan Antonio Montano-Hirose, et al. Modelling the dynamics of west nile virus[J]. Bull. Math. Biol, 2005, 67(6): 1157-1172.
  • 3Wan Hui, Zhu Huaiping. The backward bifurcation in compartmental models for west nile virus[J]. Math. Biosci, 2010, 227: 20-28.
  • 4Bowman C, Gumel A B, Wu J, et al. A mathematical model for assessing control strategies against west nile virus[J]. Bull. Math. Biol, 2005, 67(5): 1107-1133.
  • 5Jiang J, Qiu Z, Wu J, et al. Threshold conditions for west nile virus outbreaks [J]. Bull. Math. Biol, 2009, 71(3): 627-647.
  • 6Wayne D E S. Pathogenicity of west nile virus for turkeys[J]. Avian Diseases, 2000, 44: 932-937.
  • 7Kenkre V M, Parmenter R R, Peixoto I D, et al. A theoretical framework for the analysis of the west nile virus epidemic[J]. Math. Comput. Model, 2005, 42: 313-324.
  • 8Lewis M. A comparison of continuous and discrete- time west nile virus outbreaks[J]. Bull. Math. Biol, 2006, 68: 491-509.
  • 9Wonham M J, de-Camino-Beck T, Lewis M. An epidemiological model for west nile virus: invasion analysis and control application[J]. Proe. Roy. Soc. London, Series B, 2004, 1538: 501-507.
  • 10Arino J, McCluskey C C, Driessche P van den. Global results for an epidemic model with vaccination that exhibits backward bifurcation[J]. SIAM J. Appl. Math., 2003, 64: 260-276.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部