期刊文献+

两类迹非零对称本原有向图的scrambling指数 被引量:1

Scrambling Indices of Two Classes of Symmetric Primitive Digraphs with Nonzero Trace
下载PDF
导出
摘要 在组合矩阵论的基础上,利用图论、数论的相关知识和理论以及本原指数、scrambling指数的定义,得到了一类迹非零对称本原有向图的scrambling指数和另一类迹非零对称本原有向图的广义scrambling指数的上界. On the basis of combinatorial matrix theory,they were proved by using graph theory,number theory and the definitions of the exponent,the scrambling index for primitive digraphs.The scrambling index and the bounds for the generalized scrambling indices are obtained for one class of symmetric primitive digraphs with nonzero trace and the other class.
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第1期17-19,共3页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(11071227)
关键词 SCRAMBLING指数 广义scrambling指数 有向图 scrambling index generalized scrambling indices digraph bound
  • 相关文献

参考文献13

  • 1Brualdi R A, Ryser H J. Combinatorial matrix theory [M] New York: Cambridge University Press, 1991.
  • 2Akelbek M, Kirkland S. Coefficients of ergodicity and the scrambling index[J]. Linear Algebra Appl, 2009, 430: 1111-1130.
  • 3Huang Yufei, Liu Bolian. Generalized scrambling indices of a primitive digraph [J]. Linear Algebra Appl. , 2010, 433: 1798-1808.
  • 4Chen Shexi, Liu Bolian. The scrambling index of symmetric primitive matrices[J]. Linear Algebra Appl. , 2010, 433: 1110-1126.
  • 5Liu Bolian, Lai Hongjian. Matrices in combinatorics and graph theory [ M ]. Netherlands: Kluwer Academic Publishers, 2000.
  • 6Liu Bolian. On fully indecomposable exponent for primitive Boolean matrices with symmetric ones[J]. Linear Multilinear Algebra, 1992, 31: 131-138.
  • 7Akelbek M, Kirkland S. Primitive digraphs with the largest scrambling index[J]. Linear Algebra Appl, 2009, 430: 1099-1110.
  • 8IAu Bolian, Huang Yufei. The scrambling index of primitive digraphs[J]. Computers Mathematics with Applications, 2010, 60: 706-721.
  • 9Akelbek M, Fital S, Shen Jian. A bound on the scrambling index of a primitive matrix using Boolean rank [J]. Linear Algebra Appl. , 2009, 431: 1923- 1931.
  • 10Brualdi R A, Shao Jiayu. Generalized exponent set of primitive symmetric digraphs [J]. Discrete Appl Math, 1997, 74: 275-293.

二级参考文献11

  • 1邵燕灵,潘晋孝,高玉斌.n≤2d-4的本原有向图的本原指数的上界[J].太原机械学院学报,1994,15(2):126-130. 被引量:1
  • 2邵嘉裕.对称本原矩阵的指数集[J].中国科学:A辑,1986,9:931-939.
  • 3Liu Bolian,McKay B, Wormald N, Zhang Kemin.The exponent set of symmetric primitive (0,1)-matrices with zero trace [J3. Linear Algebra Appl.1990, (133): 121--131.
  • 4Brualdi R A, Ryser H J. Combinatorial Matrix Theory[M]. New York: Cambridge Univ. Press, 1991.
  • 5Shao Yanling,Gao Yubin. The kth upper generalized exponent set for primitive matrices [J]. The Australarian Journal of Combinatorics, 2001, (23): 19--26.
  • 6Li Qiao,Discrete Math,1993年,123卷,75页
  • 7Brualdi R A,J Graphory,1990年,14卷,483页
  • 8Shao Jiayu,Linear Algebra Appl,1985年,65卷,91页
  • 9柳柏濂,高玉斌,邵燕灵.对称本原矩阵广义上指数的极矩阵[J].应用数学学报,1997,20(4):559-566. 被引量:6
  • 10高玉斌,邵燕灵.对称本原有向图的重上广义本原指数[J].应用数学学报,1998,21(2):161-164. 被引量:2

共引文献4

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部