期刊文献+

基于联系度容差关系的不完备信息故障诊断

Diagnosis for Incomplete Information Based on Connection Degree Tolerance Relation
下载PDF
导出
摘要 针对不完备信息条件下的故障诊断问题,研究了一种基于(α,β,γ)联系度容差关系的故障诊断方法.定义不完备诊断信息系统以描述不完备诊断信息,定义(α,β,γ)联系度容差关系以衡量对象间的同一、对立和不定关系;提出了基于(α,β,γ)联系度容差关系的属性约简方法,设计了基于最优同一度的不完备信息故障诊断方法;将该方法应用于管理控制计算机的故障诊断,实例验证了方法能有效处理不完备信息,显著提高了不完备信息条件下的故障诊断准确率. To utilize the incomplete information effectively,a diagnostic approach was proposed based on(α,β,γ) connection degree tolerance relation.Firstly,the incomplete diagnostic information system was defined for equipments' incomplete information,also(α,β,γ) connection degree tolerance relation was defined for their consistent,inconsistent or uncertain relationships.Then,attribution reduction method was researched based on the new tolerance relation,and new diagnostic method was designed based on optimized inconsistent degree.At last,the designed method was validated with the diagnosis of some-type controlling processor.Cases show that this approach can deal with incomplete information effectively,and enhance the diagnostic accuracy remarkably.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2013年第1期34-40,共7页 Journal of North University of China(Natural Science Edition)
基金 空军工程大学研究生创新基金资助项目(Dx2010107)
关键词 不完备信息 故障诊断 联系度容差关系 不完备诊断信息系统 incomplete information fault diagnosis connection degree tolerance relation incomplete diagnostic information system
  • 相关文献

参考文献12

  • 1Gokce E I, Shrivastava A K, Cho J J, et al. Decision fusion from heterogeneous sensors in surveillance sensor systems[J]. IEEE Transactions on Automation Science and Engineering. 2011, 8(1) : 228-233.
  • 2Mengshoel O J, Chavira M, Caseio K, et al. Probabilistic model based diagnosis: an electrical power system case study[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2010, 40(5): 874-885.
  • 3Flesca S, Furfaro F, Parisi F. Querying and repairing inconsistent numerical databases [J]. ACM Transactions on Database Systems. 2010, 35(2): 11- 14.
  • 4徐怡,李龙澍.基于(α,λ)联系度容差关系的变精度粗糙集模型[J].自动化学报,2011,37(3):303-308. 被引量:13
  • 5Qian Yuhua, I.iang Jiye, Dang Chuangyin. Incomplete multi granulation rough set[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A.- Systems and Humans, 2010, 40(2): 420-431.
  • 6Garmendia I., Recasens J. How to make a 7' transitive a proximity relation[J]. IEEE Transaction on Fuzzy Systems, 2009, 17(1): 200-207.
  • 7Grant J, Hunter A. Measuring consistency gain and information loss in stepwise inconsistency resolution [J]. Computer Science, 2011, 67(17): 362 373.
  • 8Xu Weihua, Li Yuan, Liao Xiuwu. Approaches to attribute reductions based on rough set and matrix computation in inconsistent ordered information systems[J]. Knowledge-Based Systems, 2012, 27 (3): 78 91.
  • 9Gvijay S G, Venkateswara R E, Srinivasa R E. Uncertain data classification using rough set theory [J]. Advances in Intelligent and Soft Computing. 2012, 132: 869-877.
  • 10Wang Jue, Abdel-Rahman Hedar, Wang Shouyang, et al. Rough set and scatter search metaheuristic based feature selection for credit scoring[J]. Expert Systems with Applications, 2012, 39 (6): 6123- 6128.

二级参考文献20

  • 1程嗣怡,索中英,吴华,张官荣,钟秋.基于协调近似表示空间的航空发动机故障诊断[J].航空动力学报,2009,24(7):1644-1648. 被引量:9
  • 2周磊,舒兰.基于新集对分析的粗糙集模型(英文)[J].模糊系统与数学,2006,20(4):111-116. 被引量:10
  • 3Kryszkiewicz M. Comparative study of alternative type of knowledge reduction in inconsistent systems[J]. International Journal of Intelligent Systems, 2001,16 (1) : 105 - 120.
  • 4张峥.不完备不协调信息条件下的设备智能故障诊断[D].武汉:华中科技大学,2006.
  • 5Huang Y C. Fault section estimation in power systems using a novel decision support system[J]. IEEE Trans. on Power Systems, 2002,17(2) :439 - 444.
  • 6Shyamsundar N, Gadh R. Internet-based collaborative product design with assembly features and virtual design spaces[J].Computer-Aided Design, 2001,33 (9) : 637 - 651.
  • 7Pawlak Z, Skowron A. Rough sets and boolean reasoning[J]. Information Science ,2007,177(1) :41 - 73.
  • 8Singh S, Dey L. A new customized document categorization scheme using rough membership[J]. Applied Soft Computing, 2005,5(8) :373 - 390.
  • 9Wei L, Zhang W X. A novel statistical method on decision table analysis[J]. InternationaZ Journal of Uncertainty Fuzziness and Knowledge-Based Systems ,2004,33(9):973- 978,.
  • 10Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers [J].Pattern Recgnition, 2000, 33 (1) :25 - 41.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部