摘要
四元术作为中国传统数学中解多元高次方程组的巨大成就,在中国数学史上占有极其重要的地位。它的2种主要方法是“互隐通分相消”和“剔而消之”,而这2种方法又是更基本的“内二行外二行相乘相消”方法的推广。“内二行外二行相乘相消”的思想源于《九章算术》中的方程术及其刘徽注。后者通过对特定位置及其关系的确立发展了中国传统数学中的位置数学并完成了对线性方程组的求解。“内二行外二行相乘相消”方法正是对这一位置数学思想的又一发展。
Chinese Four Element Algebra was developed in the course of finding the roots of higher degree equations with several elements, and there are three main methods in it. The mathematical foundation of these methods is discussed. The conclusion is that Zhu Shijie, one of the greatest mathematicians in the history of Chinese mathematics, founded them by using some speeial positions and their constant relationship.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
1991年第4期492-498,共7页
Journal of Beijing Normal University(Natural Science)
基金
国家自然科学基金
关键词
四元术
方程组
位置数学
位置关系
equations
position
constant relationship
positiond mathematiors
Chinese Four Element Algebra.