期刊文献+

基于CHRIS/PROBA的植被叶面积指数估算模型研究 被引量:3

Estimation Models of Leaf Area Index(LAI) Based on Remote Sensing Image of CHRIS/PROBA
下载PDF
导出
摘要 选用江西省余干县多角度高光谱遥感数据CHRIS/PROBA,提取了5种植被指数(VI),即归一化植被指数(NDVI)、垂直植被指数(PVI)、调整土壤植被指数(MSAVI)、比值植被指数(RVI)、大气阻抗植被指数(ARVI),与地面实测的植被叶面积指数进行了回归分析,建立300个LAI-VI关系模型。结果表明:在所有的模型中,从5个角度来看,0°提取叶面积指数效果最好,R2=0.591,RMSE=0.650;-55°提取叶面积指数效果最差,R2=0.551,RMSE=0.821;从植被类型来看,针阔林最好,其次为阔叶林、灌木、针叶林和草地;从植被模型种类来看,指数模型好于一次回归模型;从植被指数来看,PVI最好,其次为MSAVI、NDVI、RVI、ARVI。在LAI-VI关系建模过程中,基于多角度高光谱遥感数据提取植被指数,有利于充分挖掘遥感影像信息,能够提高LAI估算精度。 The ESA-mission CHRIS-PROBA(Compact High Resolution Imaging Spectrometer onboard the Project for On-board Autonomy) was used for providing space borne imaging spectrometer and multiangular data to assess the LAI.Five spectral vegetation indices(VI) were derived from CHRIS-PROBA image,including normalized difference vegetation index(NDVI),perpendicular vegetation index(PVI),modified soil adjusted vegetation index(MSAVI),ratio vegetation index(RVI),atmospheric resistance vegetation index(ARVI).Three hundreds LAI-VI correlation models were established.The VI-LAI correlation coefficients varied greatly across vegetation,vegetation indices,as well as image angular.In all models,from the perspective of angular,the best model is 0° image,R2=0.591,RMSE=0.650,the worst model is-55° image,R2=0.551,RMSE=0.821,from the perspective vegetation types,the best model is coniferous forest,followed by the broadleaf forests,shrubs,coniferous forests and grasslands,from the types of vegetation model,exponential model is better than one regression model,from the perspective vegetation index,the best model is PVI,followed by MSAVI,NDVI,RVI,ARVI.
出处 《安徽农业科学》 CAS 2013年第2期907-910,共4页 Journal of Anhui Agricultural Sciences
基金 国家自然科学基金项目(41071281) 江苏省高校自然科学研究项目(10KJD170005)
关键词 多角度 高光谱 植被指数 叶面积指数 模型 Multi-angular Hyperspectral Vegetation index LAI Model
  • 相关文献

参考文献10

  • 1BARET F,CHAMPION I,GUYOT G,et al.Monitoring wheat canopies witha high spectral resolution radiometer[J].Remote Sensing of Environment,1987,22(3):367-378.
  • 2BROGE N H,LEBLANC E.Comparing prediction power and stability ofbroadband and hyperspectral vegetation indices for estimation of green leafarea index and canopy chlorophyll density[J].Remote Sensing of Environ-ment,2001,76(2):156-172.
  • 3ELVIDGE C D,CHEN Z.Comparison of broad-band and narrowband redand near-infrared vegetation indices[J].Remote Sensing of Environment,1995,54(1):38-48.
  • 4GILABERT M A,GANDIA S,MELIA J.Analyses of spectral biophysicalrelationships for a corn canopy[J].Remote Sensing of Environment,1996,55(1):11-20.
  • 5JACKSON R D,PINTER J P J.Spectral response of architecturally differentwheat canopies[J].Remote Sensing of Environment,1986,20(1):43-56.
  • 6RONDEAUX G,STEVEN M D.Comparison of vegetation indices to retrievevegetation cover from remotely sensed data:A simulation study for the AT-SR-2 channels[C] //GUYOT G.Photosynthesis and remote sensing.Proc.Colloquium,Montpellier.EARSeL,1995:237-242.
  • 7SCHLERF M,ATZBERGER C,HILL J.Remote sensing of forest biophysi-cal variables using HyMap imaging spectrometer data[J].Remote Sensingof Environment,2005,95(2):177-194.
  • 8WANG Q,ADIKU S,TENHUNEN J,et al.On the relationship of NDVIwith leaf area index in a deciduous forest site[J].Remote Sensing of Envi-ronment,2005,94(2):244-255.
  • 9BARET F,GUYOT G.Potentials and limits of vegetation indices for LAIand APAR assessment[J].Remote Sensing of Environment,1991,35(2):161-173.
  • 10TURNER D P,COHEN W B,KENNEDY R E,et al.Relationships be-tween leaf area index and LandsatTM spectral vegetation indices acrossthree temperate zone sites[J].Remote Sensing of Environment,1999,70(1):52-68.

同被引文献36

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部