期刊文献+

金铂纳米合金催化磷钼蓝光度法测定半胱氨酸 被引量:1

AuPt Nanoalloy Catalytic Phosphomolybdate Blue Spectrophotometric Assay for Cysteine
下载PDF
导出
摘要 在pH2.8HCOOH-HCOONa缓冲溶液中,半胱氨酸(Cys)可与金铂纳米粒子(AuPtNP)作用发生聚集,导致深红色的金铂纳米微粒变成蓝紫色。AuPtNP对甲酸还原磷钼酸生成磷钼蓝反应具有较强的催化作用,而金铂纳米粒子聚集体(AuPtNPA)的催化作用较弱。随着Cys浓度增大,体系中AuPtNPA增多,而AuPtNP减少,催化能力随之减弱,磷钼蓝在700nm处的吸光度值降低,Cys浓度在30~350nmol/L与其吸光度降低值ΔA呈良好的线性关系,检测限为28nmol/L,表观摩尔吸光系数为1.8×106L·mol-1·cm-1。据此建立了测定半胱氨酸的纳米金铂催化光度分析新方法。 In the pH 2. 8 HCOOH-HCOONa buffer solution,the cysteine(Cys) interacted with gold-platinum nanoparticles (AuPtNP) to form aggregations that resulted in its color changing from wine red to blue-violet. The AuPtNP has a strong catalysis on the phosphomolybdate blue reaction of formic acidphosphomolybdic acid,but the AuPtNP aggregations (AuPtNPA) catalysis is weak. With the increase of Cys concentration,the AuPtNPA increased and the AuPtNP decreased,the catalysis decreased and the absorption value of phosphomolybdate blue at 700 nm decreased. The Cys concentrations in the range of 30~350 nmol/L had good linear response to the decreased absorption value AA,with a detection limit of 28 nmol/L, and its molar absorption coefficients was 1. 8 × 106^6 L · mo1^-1 · cm^-1. Thus, a new nanocatalytic spectrophotometric method is established for the determination of Cys.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2012年第4期59-66,共8页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(21267004 21075023) 广西环境污染控制理论与技术重点实验室基金资助项目
关键词 半胱氨酸 纳米合金催化 磷钼蓝反应 分光光度法 cysteine nanoalloy catalyst phosphomolybdate blue reaction spectrophotometry
  • 相关文献

参考文献4

二级参考文献56

共引文献15

同被引文献14

  • 1Turner J A. Sustainable hydrogen production [ J]. Science, 2004, 305 (5686) : 972 - 974.
  • 2Bhatia S K, Myers A L. Optimum conditions for adsorptive storage [J]. Langmuir, 2006, 22(4) : 1688 -1700.
  • 3Yildirim T, Ciraci S. Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium[ J]. Physical Review Letters, 2005, 94(17): 175501 -175504.
  • 4Sun Q, Wang Q, Jena P, et al. Clustering of Ti on a C6o surface and its effect on hydrogen storage[J]. Journal of the American Chemical Society, 2005, 127 (42) : 14582 -14583.
  • 5Ataca C, Akturk E, Ciraci S, et al. High-capacity hydrogen storage by metallized graphene [ J ]. Applied Physics Letters, 2008, 93(4) : 43123 -43125.
  • 6Sun Q, Jena P, Wang Q, et 8-1. First-principles study of hydrogen storage on Lin C60 [ J ]. Journal of the American Chemical Society ,2006,128 (30) :9741 - 9745.
  • 7Li J, Cao C B, Hao J W, et al. Self-assembled one-dimensional carbon nitride architectures [ J ]. Diamond and Related Mate- rims, 2006, 15(10) : 1593 - 1600.
  • 8Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[ J]. Physical Review B, 1996, 59(3) : 1758 -1775.
  • 9Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method[ J]. Physical Review Letters, 1980, 45 (7) : 566 - 569.
  • 10Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23) : 13244 - 13249.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部