期刊文献+

视觉机制研究对机器视觉的启发示例 被引量:5

The motivation of visual mechanisms to machine vision: examples
原文传递
导出
摘要 研究灵长类的视觉系统机制并以此为基础设计机器视觉的算法已成为重要研究方向,并对机器视觉产生了重要的推动作用。本文从视觉机制和机器视觉方法的角度出发,分析了两大类视觉机制或模型,并列举受其影响和推动的多种重要机器视觉方法:1)合作学习和竞争学习机制,其中合作学习和竞争学习模型相关的机器视觉算法包括立体视觉算法、神经网络、稀疏编码;2)简单细胞和复杂细胞模型,相关的机器视觉算法包括HMAX特征、SIFT描述子和deep belief network。 It has been a promising methodology that designs machine vision algorithms based on the vision mechanism of primate. In this paper, from the intersection points of vision mechanism and machine vision algorithms, we summarize two categories of important vision mechanisms or models, and present their corresponding machine vision algorithms. 1 ) Cooperative learning and competitive learning: machine vision algorithms motivated by the models typically include stereo vision, neural networks and sparse coding. 2) Simple cell and complex cell: machine vision algorithms corresponding to the models focus on HMAX feature, SFIT feature and deep belief networks.
作者 李雄 刘允才
出处 《中国图象图形学报》 CSCD 北大核心 2013年第2期152-156,共5页 Journal of Image and Graphics
基金 国家重点基础研究发展计划(973)基金项目(2011CB302203) 国家自然基金项目(60833009 60975012)
关键词 灵长类动物的视觉机制 机器视觉方法 合作学习与竞争学习 简单细胞与复杂细胞 vision mechanism of primate machine vision algorithm cooperative learning and competitive learning simple cell and complex cell
  • 相关文献

参考文献13

  • 1Lowe D G. Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,(60):91-110.doi:10.1023/B:VISI.0000029664.99615.94.
  • 2Olshausen B A,Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,(13):607-609.
  • 3Marr D,Poggio T. Cooperative computation of stereo disparity[J].Science,1976,(4262):283-287.
  • 4Serre T,Wolf L,Poggio T. Object recognition with features inspired by visual cortex[A].New York:IEEE Press,2005.1-7.
  • 5Hinton G E,Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J].Science,2006,(5786):504-507.
  • 6Lee H,Grosse R,Ranganath R. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations[A].Montreal,Canada,ACM,2009.1-8.
  • 7Foldiak P,Fiildihk P. Forming sparse representations by local anti-hebbian learning[J].Biological Cybernetics,1990,(02):165-170.
  • 8Samonds J M,Potetz B R,Lee T S. Cooperative and competitive interactions facilitate stereo computations in macaque primary visual cortex[J].Journal of Neuroscience,2009,(50):15780-15795.
  • 9Hubel D H,Wiesel T N. Receptive fields of single neurons in the cat's striate cortex[J].Journal of Physiology,1959,(03):574-591.
  • 10Lee T S. Image representation using 2D Gabor wavelets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,(10):959-971.doi:10.1109/34.541406.

同被引文献55

  • 1颜发根,刘建群,陈新,丁少华.机器视觉及其在制造业中的应用[J].机械制造,2004,42(11):28-30. 被引量:60
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3Van De Sande K E A,Gevers T,Snoek C G M. Evaluating Color Descriptors for Object and Scene Recognition[J].Pattern Analysis and Machine Intelligence IEEE Transactions on,2010,(09):1582-1596.
  • 4Otsu N. A Threshold Selection Method from Gray-Level Histograms[J].{H}IEEE Transactions on Systems Man and Cybernetics,1979,(01):62-66.
  • 5Imocha O Singh,Tejmani Sinam,James O T. Local Contrast and Mean Based Thresholding Technique in Image Binarization[J].International Journal of Computer,2012,(06):0975-8887.
  • 6MORANDUZZO T,MELGANI F. Automatic car countingmethod for unmanned aerial vehicle images [ J ]. IEEETransactions on Geoscience and Remote Sensing, 2014,52(3) :1635-1647.
  • 7LIU Y C,DAI Q H. Vision aided unmanned aerial vehi-cle autonomy : An overview [ C ]. International Congresson Image and Signal Processing ( CISP),2010:417~421.
  • 8HAVANGI R,TAGHIRAD H D,NEKOUI M A,et al.A square root unscented fastslam with improved proposaldistribution and resampling [ J ]. IEEE Transactions onIndustrial Electronics, 2014,61 (5) : 2334-2345.
  • 9STEDER B, GRISETTI G,STACHNISS C, et al. VisualSLAM for flying vehicles[ J]. IEEE Transactions on Ro-botics, 2008,24(5) ;1088-1093.
  • 10HARRIS C G,STEPHENS M. A combined corner andedge detector [ C ]. Proceeding of the Fourth Alvey Vi-sion Conference, 1988 : 147-151.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部