期刊文献+

Fe-Cu粉体烧结过程中的液固界面位移

Sedimentation mechanisms of sintered Fe-Cu alloys
下载PDF
导出
摘要 对Fe-Cu粉体的烧结规律进行实验研究。结果表明,烧结过程中固体颗粒的总固相体积分数逐渐减少,并伴随液相区成分梯度的消失,导致界面上升或下降,此位移是由消除成分梯度的沉降机制和固相颗粒重组的沉降机制共同控制。成分梯度消失后,烧结过程进入仅由后一种重组机制控制的慢速界面位移。当初始固相体积分数大于某临界值时,液相区内无成分梯度,所以整个烧结过程由重组机制控制。 Sintering mechanisms of Fe-Cu alloys were investigated. The results show that the overall solid volume fraction decreases in accordance with the disappearance of the composition gradient in the liquid zone of the sample. The solid/liquid interface in the sample goes up during the sintering process. This is controlled by the combination of two mechanisms, concentration gradient eliminating sedimentation and concentration gradient-free sedimentation. When there is no concentration gradient in the liquid zone of the sample, the process is only controlled by the latter mechanism. If an initial solid volume fraction of an alloy is larger than a critical value, the latter mechanism is the only one controlling the interface displacement.
作者 徐磊
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2013年第2期10-13,共4页 Transactions of Materials and Heat Treatment
基金 教育部留学回国人员科研启动基金
关键词 烧结Fe-Cu 成分梯度 界面位移 sintering Fe-Cu alloy concentration gradient sedimentation
  • 相关文献

参考文献8

  • 1Heaney D F, German R M, Ahn I S. The gravitational effects on low solid-volume fraction liquid-phase sintering [ J ]. Journal of Materials Science, 1995,30(22) :5808 -5812.
  • 2Upadhyaya A, German R M. Gravitational effects during liquid phase sintering[ J ]. Materials Chemistry and Physics,2001,67 (1 -3 ) :25 -31.
  • 3汪维金,周智耀,詹土生,杨宁,朱玉斌.钨铜生坯在连续液相烧结中的致密化行为[J].稀有金属材料与工程,2009,38(4):730-733. 被引量:4
  • 4Nizhenko V I,Petrishchev V Y,Skorokhod V V. Densification kinetics of W-Fe-Sn psedo-alloys in liquid phase sintering[J]. Power Metallurgy and Metal Ceramics ,2007,46 ( 5 - 6 ) :222 - 227.
  • 5于薛刚,王昕,单妍,徐静,尹衍升.液相烧结对微-纳复合ZTA陶瓷组织性能的影响[J].材料热处理学报,2003,24(2):5-8. 被引量:3
  • 6Niemi A N, Courtney T H. Settling in solid-liquid systems with specific application to liquid phase sintering[ J ]. Acta Metallurgica et Materialia, 1983, 31(9) :1393 -1401.
  • 7Sirota E B, Ou-yang H D,Sinha S K,et al. Complete phase diagram of a charged colloidal system:A synchrotron x-ray scattering study[ J]. Physical Review Letters, 1989,62 ( 13 ) : 1524 - 1527.
  • 8Brener E A, Temkin D E. Velocity-selection problem for combined motion of melting and solidification fronts[ J ]. Physical Review Letters,2005, DOI: 10. 1103/PhysRevLett. 94. 184501.

二级参考文献17

  • 1周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25. 被引量:64
  • 2王铁军,周武平,熊宁,刘国辉.电子封装用粉末冶金材料[J].粉末冶金技术,2005,23(2):145-151. 被引量:31
  • 3范景莲,彭石高,刘涛,成会朝.钨铜复合材料的应用与研究现状[J].稀有金属与硬质合金,2006,34(3):30-35. 被引量:46
  • 4Yunping Li et al. International Journal of Refractory Metals & Hard Materials[J], 2003, 21:259.
  • 5Dae-Gun Kim et al. Materials Letters[J], 2004, 58:1199.
  • 6Su Huaqin(苏华钦). Metallurgy Transmission Principle(冶金传输原理)[M]. Nanjing: Southeast University Press, 1999:25.
  • 7Alexander K B, Becher P F, Shirley B. Grain growth kinetics in alumina-zirconia (CeZTA) composites[ J]. J Am C eram Soc, 1994,77 (4) :939 - 946.
  • 8Niihara K J. New design concept of structural ceramlcs:Ceramic Nano-composites[J]. J Am Ceram Soc, 1992,75(9) :2363 ~ 2372.
  • 9Xue L A, Chen I W. Low-temperature sintefing of alumina with liquid-forming additives[ J]. J Am Ceram Soc, 1991,74(8) : 2011.
  • 10Kang S J L,Kim K H,Y~on D N. Densification and shrinkage during liquid-phase sintefing[J]. J Am Ceram Soc, 1991,71(2) :425.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部