期刊文献+

重组大肠杆菌产Streptomyces sp.FA1来源木聚糖酶的摇瓶发酵优化 被引量:1

Optimization of Fermentation in Shake Flasks for the Xylanase in Recombinant E.coli
原文传递
导出
摘要 为了实现来源于Streptomyces sp.FA1的木聚糖酶的高效胞外分泌表达,对E.coli BL21(DE3)/pET20b(+)/coe/xynA基因工程菌的发酵产酶诱导条件进行优化,获得最优的诱导条件为25℃发酵6 h后添加终浓度为0.4 mmol/L的IPTG。在此基础上对发酵培养基进一步优化,得到最优培养基成分为:甘油11 g/L,酵母粉24 g/L,蛋白胨8 g/L,磷酸盐浓度89 mmol/L,镁离子4mmol/L。最终酶活达到780.2 U/ml,为未优化前的2.2倍,是目前大肠杆菌摇瓶发酵产木聚糖酶的最高表达水平,为实现该酶的工业化生产奠定基础。 In order to achieve high production of the xylanase, the optimization of culture medium was investigated in E. coli BI21 (DE3) harboring the plasmid pET20b ( + )/coe/xynA. The optimized medium and induction condition were as follows : 11 g/L glycerol, 24 g/L yeast extract, 8 g/L peptone, 89 mmol/L P043, 4 mmol/L Mg2+ , induced by 0.4 mmol/L IPTG at 6h of culture. Under this condition, the enzyme activity increased from 346.8 U/ml to 780.2 U/ml, which Was 2.2 times as high as that when it was not optimized.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2013年第2期41-46,共6页 China Biotechnology
基金 国家自然科学基金(30970057)(111-2-06) 江苏省科学与技术支持项目(BE2012018)资助项目
关键词 链霉菌 木聚糖酶 重组大肠杆菌 发酵优化 Streptomyces sp. FA1 Xylanase Recombinant E. coli Optimization
  • 相关文献

参考文献13

  • 1Beg Q, Kapoor M, Mahajan L their industrial applications : et al. Microbial xylanases and a review. Appl MicrobiolBioteehnol, 2001, 56(3-4): 326-338.
  • 2Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev, 2005,29 ( 1 ) : 3- 23.
  • 3Biely P. Microbial xylanolytic systems. Trends Biotechnol 1985 ; 3 ( 11 ) : 286-290.
  • 4P01izeli M L, Rizzatti A C, Monti R. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol,2006, 67(5): 577-591.
  • 5Deesukon W, Nishimura Y, Harada N, et al. Purification, characterization and gene cloning of two forms of a thermostable endo-xylanase from Streptomyces sp. SWU10. Process Biochem, 2011, 46(12) : 2255-2256.
  • 6Qiu z, Shi P, Luo H, et al. A xylanase with broad pH and temperature adaptability from Streptomyces megasporus DSM 41476, and its potential application in brewing industry. Enzyme Microb Tech, 2010, 46(6) : 506-512.
  • 7Li N, Shi P, Yang P, et al. A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol, 2009, 83( 1 ) : 99-107.
  • 8Jiang Z, Deng W, Yan Q, et al. Subunit composition of a large xylanolytie complex ( xylanosome ) from Streptomyces olivaceoviridis E-86. J Bioteehnol, 2006, 126 ( 3 ) : 304-312.
  • 9Li N, Meng K, Wang Y, et al. Cloning, expression, andcharacterization of a new xylanase with broad temperature adaptability from Streptomyces sp. $9. Appl Microbiol Biotechnol, 2008, 80(2) : 231-234.
  • 10Li N, Yang P, Wang Y, et al. Cloning, expression, and characterization of protease-resistant xylanase from Streptomyces fradiae var. kll. J Microbiol Biotechnol, 2008, 18(3): 410- 416.

二级参考文献16

  • 1曹新志,金征宇.嗜碱芽孢杆菌产环糊精葡萄糖基转移酶发酵条件的优化[J].食品科学,2005,26(2):122-126. 被引量:16
  • 2Szerman N,Schroh I, Rossi A L,et al.Cyclodextrin production by cyclodextrin glycosyltransferase from Bacillus circulans DF 9R. Bioresour Technol, 2007,98(15):2886-2891.
  • 3Li Z F, Wang M, Wang F, et al.Gamma-cyclodextrin:a review on enzymatic production and applications.App Microbiol Biotechnol, 2007,77(2):245-255.
  • 4Cucinotta V, Contino A, Giuffrida A, et al. Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. Journal of Chromatography A, 2010,1217(7):953-967.
  • 5Loftsson T, Brewster M E. Pharmaceutical applications of cyclodextrins: basic science and product development. Journal of Pharmacy and Pharmacology, 2010,62(11):1607-1621.
  • 6Szente L, Szejtli J. Cyclodextrins as food ingredients. Trends Food Sci Tech, 2004, 15(3-4): 137-142.
  • 7Moldenhauer J, Cully J. Method for producing a coenzyme Q10/g-cyclodextrin complex. US Pat, 0012774A1.2003.
  • 8Wu Q, Xu H, Ying H J, et al. Kinetic analysis and pH-shift control strategy for poly(gamma-glutamic acid) production with Bacillus subtilis CGMCC 0833. Biochemical Engineering Journal, 2010,50(2):24-28.
  • 9Wei G, Li Y, Du G, et al. Application of a two-stage temperature control strategy for enhanced glutathione production in the batch fermentation by Candida utilis. Biotechnol Lett, 2003, 25: 887-890.
  • 10Goyal D, Sahni G, Sahoo D K. Enhanced production of recombinant streptokinase in Escherichia coli using fed-batch culture. Bioresource Technology, 2009,100(19): 4468-4474.

共引文献3

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部