期刊文献+

时间序列植被指数频域滤波去噪算法的优化研究 被引量:4

Optimization of Frequency Domain Denoising Algorithms for Time-series Vegetation Index
下载PDF
导出
摘要 频域低通滤波是一种比较常用的去噪方法,但在对时间序列植被指数去噪时易受异常值的影响,所以需要对传统的频率域滤波算法进行优化。本研究采用的优化思路是:首先根据植被的生长规律识别出异常值,再通过滤波后的数值代替异常值,然后迭代执行频率域滤波进行去噪,直到结果中不存在异常值为止。分别对MODIS-NDVI进行本文优化算法和传统傅里叶与小波低通滤波去噪,结果表明优化的算法能够在不借助已知图像质量评价信息的条件下,有效地避免了异常值的干扰,从而大幅度地提高了图像的质量和应用效果。 Traditional frequency domain filtering is a commonly used denoising method,which is apt to be affected by the abnormal values.This paper proposed an optimized approach:firstly,the abnormal values were detected according to the growth regulation of the plants,and the abnormal values were substitute with the filtered results;then the denoising process was implemented iteratively until there were no abnormal values in the result.The MODIS-NDVI was filtered by the optimized and the traditional Fourier and Wavelet low-pass algorithms.Result showed that the optimized algorithms could avoid the influence of abnormal values without the help of known image quality assessment information,which proved that the optimized algorithms could greatly improve the image quality and the application effects.
出处 《遥感信息》 CSCD 2013年第1期24-28,共5页 Remote Sensing Information
基金 江苏省高校自然科学研究计划项目(10KJB420003) 国家自然科学基金资助项目(41201454)
关键词 时间序列 植被指数 频域滤波 傅里叶变换 小波变换 time series vegetation index frequency domain filtering fourier transform wavelet transform
  • 相关文献

参考文献11

  • 1ROUSE J W,HAAS R H,SCHELL J A. Monitoring vegetation systems in the Great Plains with ERTS[A].1973.309-317.
  • 2SAVITZKY A,GOLAY M J E. Smoothing and differentiation of data by simplified least squares procedures[J].Analytical Chemistry,1964,(08):1627-1639.
  • 3J(O)NSSON P,EKLUNDH L. Seasonality extraction by function fitting to time-series of satellite sensor data[J].IEEE Transactions on Geoscience and Remote Sensing,2002,(08):1824-1832.doi:10.1109/TGRS.2002.802519.
  • 4CHEN J,JONSSON P,TAMURA M. A simple method for reconstructing a high-quality NDVI time-series data setbased on the Savitzky-Golay filter[J].Remote Sensing of Environment,2004,(91):332-344.
  • 5SELLERS P J,TUCKER C J,COLLATZ G J. A global 1° by 1° NDVI data set for climate studies:Part Ⅱ.The generation of global fields of terrestrial biophysical parameters from the NDVI[J].International Journal of Remote Sensing,1994,(17):3519-3545.
  • 6CIHLAR J. Identification of contaminated pixels in AVHRR composite images for studies of land biosphere[J].Remote Sensing of Environment,1996,(56):149-153.doi:10.1016/0034-4257(95)00190-5.
  • 7GILLIAN L G,JOHN F M,JERRY M. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil[J].Remote Sensing of Environment,2008,(112):576-587.
  • 8LU X,LIU R,LIU J. Removal of noise by Wavelet method to generate the high-quality time series of terrestrial MODIS products[J].Photogram Metric Engineering and Remote Sensing,2007,(10):1129-1139.
  • 9SAKAMOTO T,YOKOZAWA M,TRITANI H. A crop phenology detection method using time-series MODIS data[J].Remote Sensing of Environment,2005,(96):366-374.
  • 10胡昌华;张军波;夏军.基于MATLAB的系统分析与设计[M]西安:西安电子科技大学出版社,1999.

同被引文献52

引证文献4

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部