期刊文献+

一种来源于毕赤酵母的高对映选择性羰基还原酶的性质及底物谱分析 被引量:2

Biochemical characterization and substrate profile of a highly enantioselective carbonyl reductase from Pichia pastoris
原文传递
导出
摘要 手性醇是一类非常重要的化合物,羰基还原酶催化酮的不对称还原生成对应的手性醇。从毕赤酵母Pichia pastoris GS115基因组数据中找到一个潜在的NADPH依赖的羰基还原酶,研究毕赤酵母P.pastorisGS115中的羰基还原酶。根据其核酸序列设计引物,从P.pastoris GS115基因组中扩增到目的基因ppcr,大肠杆菌BL21(DE3)中表达,Ni-NTA纯化,对酶的性质和底物谱进行了研究。PPCR的最适反应温度为35℃,最适反应pH为6.0,低于45℃时有很好的稳定性。对3-甲基-2-羰基丁酸乙酯的Km和kcat分别为9.48 mmol/L和0.12 s-1。PPCR表现出广泛的底物谱和很高的对映选择性,对醛、α-酮酯、芳香族β-酮酯及芳香族酮都表现出了很好的活性,在测定的底物中,除极少数底物外,ee值均达到97%以上。因此,PPCR具有较好的应用前景。 Carbonyl reductases catalyze carbonyl compounds to chiral alcohols that are important building blocks in fine chemical industry. To study carbonyl reductase from Pichia pastoris GSl15 (ppcr), we discovered a new gene (ppcr) encoding an NADPH-dependent carbonyl reductase by genomic data mining. It was amplified by PCR from the genomic DNA, and expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to homogeneity. The optimum temperature was 37 ℃ and the optimum pH of PPCR was 6.0. PPCR was stable below 45 ℃. The Km and kcat value of the enzyme for ethyl 3-methyl-2-oxobutanoate were 9.48 mmol/L and 0.12 s^-1, respectively. The enzyme had broad substrate specificity and high enantioselectivity. It catalyzed the reduction of aldehydes, α-ketoesters, β-ketoesters and aryl ketones to give the corresponding alcohols with 〉97% ee with only a few exceptions, showing its application potential in the synthesis of chiral alcohols.
出处 《生物工程学报》 CAS CSCD 北大核心 2013年第2期169-179,共11页 Chinese Journal of Biotechnology
基金 中国科学院知识创新工程重点方向项目(No.KSCX2-EW-G-14) 国家重点基础研究发展计划(973计划)(No.2011CB710801)资助~~
关键词 羰基还原酶 不对称还原 手性醇 毕赤酵母 carbonyl reductase, asymmetric reduction, chiral alcohol, Pichia pastoris
  • 相关文献

参考文献23

  • 1朱敦明,吴洽庆.生物催化剂立体选择性的基因工程改造[J].生物工程学报,2009,25(12):1770-1778. 被引量:6
  • 2Kaluzna IA,Matsuda T,Sewell AK. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions[J].Journal of the American Chemical Society,2004,(40):12827-12832.
  • 3Patel RN. Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances[J].Current Opinion in Biotechnology,2001,(06):587-604.
  • 4Gruber CC,Lavandera L,Faber K. From a racemate to a single enantiomer:deracemization by stereoinversion[J].Advanced Synthesis and Catalysis,2006,(14):1789-1805.
  • 5Inoue K,Makino Y,Itoh N. Production of (R)-chiral alcohols by a hydrogen-transfer bioreduction with NADH-dependent Leifsonia alcohol dehydrogenase (LSADH)[J].Tetrahedron:Asymmetry,2005,(15):2539-2549.
  • 6Ema T,Yagasaki H,Okita N. Asymmetric reduction of a variety of ketones with a recombinant carbonyl reductase:identification of the gene encoding a versatile biocatalyst[J].Tetrahedron:Asymmetry,2005,(06):1075-1078.
  • 7Hanson RL,Goldberg S,Goswami A. Purification and cloning of a ketoreductase used for the preparation of chiral alcohols[J].Advanced Synthesis and Catalysis,2005,(7/8):1073-1080.
  • 8Kaluzna IA,Feske BD,Wittayanan W. Stereoselective,biocatalytic reductions of ct-chloro-β-keto esters[J].Journal of Organic Chemistry,2005,(01):342-345.
  • 9Gr(o)ger H,Hummel W,Rollmann C. Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase[J].Tetrahedron,2004,(03):633-640.
  • 10Shorrock VJ,Chartrain M,Woodley JM. An alternative bioreactor concept for application of an isolated oxidoreductase for asymmetric ketone reduction[J].Tetrahedron,2004,(03):781-788.

二级参考文献49

  • 1Carey JS, Laffan D, Thomson C, et al. Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem, 2006, 4(12): 2337-2447.
  • 2Turner NJ. Directed evolution drives the next generation ofbiocatalysts. Nature Chem Biol, 2009, 5(8): 567-573.
  • 3Kazlauskas RJ, Bornscheuer UT. Finding better protein engineering strategies. Nature Chem Biol, 2009, 5(8): 526-529.
  • 4Toscano MD, Woycechowsky KJ, Hilvert D. Minimalist active-site redesign: teaching old enzymes new tricks. Angew Chem Int Ed, 2007, 46: 3212-3236.
  • 5Marti S, Andres J, Moliner V, et al. Computational design of biological catalysts. Chem Soc Rev, 2008, 37: 2634-2643.
  • 6Tracewell CA, Arnold FH. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol, 2009, 13: 3-9.
  • 7Reetz MT, Zonta A, Schimossek K, et al. Creation of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angew Chem lnt Ed, 1997, 36(24): 2830-2832.
  • 8Liebeton K, Zonta A, Schimossek K, et al. Directed evolution of an enantioselective lipase. Chem Biol, 2000, 7(9): 709-718.
  • 9Reetz MT, Wilensek S, Zha D, et al. Directed evolution of an enantioseleetive enzyme through combinatorial multiple-cassette mutagenesis. Angew Chem Int Ed, 2001, 40(19): 3589-3591.
  • 10Reetz MT, Puls M, Carballeira JD, et al. Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. ChemBioChem, 2007, 8: 106-112.

共引文献5

同被引文献33

  • 1羊明,徐岩,穆晓清,肖荣.一种新的高立体选择性羰基还原酶的性质及分离[J].化工进展,2006,25(9):1082-1088. 被引量:12
  • 2聂尧,徐岩,王海燕,许娜,肖荣.重组大肠杆菌不对称还原2-羟基苯乙酮合成(R)-苯基乙二醇[J].化工进展,2006,25(10):1231-1236. 被引量:16
  • 3黄志华,刘铭,王宝光,张延平,曹竹安.甲酸脱氢酶用于辅酶NADH再生的研究进展[J].过程工程学报,2006,6(6):1011-1016. 被引量:27
  • 4羊明,徐岩,穆晓清,肖荣.近平滑假丝酵母NAD(H)依赖型次级醇脱氢酶的分离纯化及酶学性质[J].应用与环境生物学报,2007,13(1):121-125. 被引量:9
  • 5Liu J Y, Lin Y P, Qiu H, et al. Substituted Phenyl Groups Improve the Pharmacokinetic Profile and Anti-Inflammatory: Effect of Urea-based Soluble Epoxide Hydrolase Inhibitors in Murine Models [J]. Eur. J. Pharma. Sci., 2013, 20(1): 1-9.
  • 6Cauda V, Schlossbauer A, Bein T. Bio-degradation Study of Colloidal Mesoporous Silica Nanoparticles: Effect of Surface Functionalization with Organo-Silanes and Poly(ethylene glycol) [J]. Micro. Meso. Mater., 2010, 132(9): 60-71.
  • 7Ema T, Kadoya T, Akihara K, et al. Chemoenzymatic Synthesis of Optically Active Alcohol and p-Amino-acid Derivative Containing the Difluoromethylene Group [J]. J. Mol. Catal. B: Enzym., 2010, 66(5): 198-202.
  • 8Ren J, Dong W Y, Yu B Q, et al. Synthesis of Optically Active ct-Bromohydrins via Reduction of ct-Bromoacetophenone Analogues Catalyzed by an Isolated Carbonyl Reductase [J]. Tetrahedron: Asymmetry, 2012, 23(3): 497-500.
  • 9Ema T, Yagasaki H, Okit N, et al. Asymmetric Reduction of Ketones Using Recombinant E. coli Cells that Produce a Versatile Carbonyl Reduetase with High Enantioseleetivity and Broad Substrate Specificity [J]. Tetrahedron, 2006, 62(5): 6143-6149.
  • 10Ye Q, Yan M, Xu L, et al. A Novel Carbonyl Reductase from Pichia Stipitis for the Production of Ethyl (S)-4-Chloro-3-hydroxybutanoate [J]. Biotechnol. Lett., 2009,31 (1) 537-542.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部