期刊文献+

利用虚拟卫星法求解火星探测器近火点制动策略 被引量:3

Mars probe near-center braking strategy using virtual satellite method
下载PDF
导出
摘要 针对采用极大值原理求解火星探测器近火点制动最优推力策略时初值不易猜测、迭代不易收敛的问题,介绍并推导了虚拟卫星方法,即通过假想一颗虚拟卫星在目标轨道上运行,探测器利用最优控制算法求解推力策略,使探测器本身与虚拟卫星的终端相对位置和速度为零,从而实现了精确入轨.在利用极大值原理求解最优推力策略的过程中,共轭变量初值的选择问题得到了解决.利用虚拟卫星方法中的相对运动关系,可以将没有实际意义的共轭变量初值转化为具有物理意义或者较易猜测的变量进行初始估计,克服了共轭变量初值猜测的盲目性,使得迭代更容易收敛.仿真结果证明了该方法的有效性. To deal with the problem that the iteration doesn′t converge well in the maximum principle,a virtual satellite method is proposed to compute a fuel optimal trajectory of Mars probe in the processing of near-center braking.In the virtual satellite method,an optimal trajectory is computed in which the real satellite rendezvous with the virtual satellite so that the real satellite will come into the target orbit.The problem of guessing initial value of co-states is solved by transfer the original co-states,which have no physical meaning,into another one that can be guessed easily and by this way the iteration will converges better.Finally the simulation results prove the efficiency of this method.
作者 刘玥 荆武兴
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第1期14-18,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(11172077)
关键词 虚拟卫星 火星探测 近心点制动 燃料最优 极大值原理 virtual satellite Mars exploring near-center braking fuel optimal maximum principle
  • 相关文献

参考文献17

二级参考文献87

  • 1荆武兴,杨涤,吴瑶华.相对运动有限推力轨道控制[J].宇航学报,1993,14(2):35-41. 被引量:4
  • 2王小军,吴德隆,余梦伦.最少燃料消耗的固定推力共面轨道变轨研究[J].宇航学报,1995,16(4):9-15. 被引量:14
  • 3Gergaud J, Haberkorn T, Martinon P. Low thrust minimum-fuel orbit transfer: a homotopic approach [J]. Journal of Guidance, Control and Dynamics, 2004, 27(6):1046-1060.
  • 4Martinon P, Gergaud J. Using switching detection and variational equation for the shooting method[J]. Optimal Control Application and Methods, 2007 (28):95-116.
  • 5Xu Y J. Enhancement in optimal multiple-burn trajectory computation by switching function analysis [J]. Journal of Spacecraft and Rockets, 2007, 44 (1)-264-272.
  • 6Bonnard B, Caillau J B. Riemannian metric of the averaged energy minimization problem in orbit transfer with low thrust [J].Ann I H Poincare-AN, 2007 (24) :395-411.
  • 7Bonnard B, Janin G. Geometric orbital transfer using averaging tecbnlques [J]. Journal of Dynamical and Control Systems, 2008,14 (2): 145-167.
  • 8Gergaud J,Haberkorn T. Homotopy method for minimum consumption orbit transfer problem [J]. ES- AIM: Control, Optimization and Calculus of Variations, 2006(12): 294-310.
  • 9Bonnard B, Caillau J B,Trelat E. Geometric optimal control of elliptic keplerian[J]. Discrete and Continuous Dynamical System--Series 13,2005,5(4);926- 956.
  • 10Popescu M. Control of affine nonlinear systems with nilpotent structure in singular problems[J]. Journal of Optimization Theory and Application, 2005, 124 (2) :155-466.

共引文献72

同被引文献24

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部