期刊文献+

飞行器姿态确定的四元数约束滤波算法 被引量:3

Quaternion constrained filter algorithm for spacecraft attitude determination
下载PDF
导出
摘要 单位四元数作为姿态描述参数具有全局非奇异、运动学方程线性的优点,但其归一化约束必须精确保持.针对这一问题,提出一种飞行器姿态确定的非线性约束滤波算法.首先,通过比较四元数先验和后验估计值的范数大小,证明乘性扩展卡尔曼滤波算法难以获得姿态最优约束解.然后,将QUEST算法与乘性卡尔曼滤波算法有效结合起来,建立一个广义的二次约束优化目标函数;状态预测阶段利用姿态及其方差传播模型来修正目标损失函数,测量更新阶段则通过求解特征值/特征矢量问题,全局显性保持了四元数的归一化约束,避免了扩展卡尔曼滤波的局部线性化近似.数学仿真对所提出算法的精度、稳定性和收敛性能进行了验证,并与乘性扩展卡尔曼滤波算法进行了比较. A major advance of using the quaternion to describe body orientation is that the kinematics equation is linear and the quaternion is also globally nonsingular.However,the algebraic constraint of unit norm needs to be maintained.An improved nonlinear constrained filter algorithm is proposed for the spacecraft attitude estimation problem subject to a unit quaternion norm constraint.First,by comparing the quaternion norm of a priori and a posteriori estimate,it is proved that the Multiplicative Extended Kalman filter can not gain the optimal solution under nonlinear constraint.Then,a generalized quadratically constrained optimization object function is developed by effective combination of QUEST algorithm and Multiplicative Kalman filter.During the predicting state,the attitude and its covariance propagation models are used to modify the cost function.During the measurement update phase,the quaternion normalization is explicitly maintained in a globally optimal manner by solving the eigenvalue-eigenvector problem and therefore the local linearization is avoided.Compared with the Multiplicative Extended Kalman filter,numerical simulation result demonstrates the precision,stability and convergence of the presented algorithm.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2013年第1期35-40,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61174201) 国家重点基础研究发展计划资助项目(2012CB720000)
关键词 姿态估计 四元数归一化 乘性扩展卡尔曼滤波 约束估计 attitude estimation quaternion normalization multiplicative extended Kalman filter constrained estimation
  • 相关文献

参考文献2

二级参考文献15

  • 1LEFFERTS E J,MARKLEY F L,SHUSTER M D.Kalman filtering for spacecraft attitude estimation[J].Journal of Guidance,1982,5(5):417 -429.
  • 2SHUSTER M D.Kalman filtering of spacecraft attitude and the QUEST model[J].Journal of the Astronautical Sciences,1990,38(3):377-393.
  • 3PSIAKI M L,MARTEL F,PAL P K.Three-axis attitude determination via kalman filtering of magnetometer data[J].Journal of Guidance,1990,13(3):506 -514.
  • 4VATHSAL S.Spacecraft attitude determination using a second-order nonlinear filter[J].Journal of Guidance,Control,and Dynamics,1987,10(6):559-566.
  • 5KASDIN N J.Recursive satellite attitude estimation with the two-step optimal estimator[C]//AIAA Guidance,Navigation,and Control Conference and Exhibit,Monterey,California:AIAA,2002:2002-4462.
  • 6CHIANG Y T,WANG L S,CHANG F R,et al.Constrainedfiltering method for attitude determination using GPS and gyro[J].IEE Proc.Radar Sonar Navigation,2002,149(5):258 -264.
  • 7JULIER S J,UHLMANN J K,DURRANT-WHYTE H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Transactions on Automatic Control,2000,45(3):477-482.
  • 8HAYKIN S.Kalman Filtering and Neural Network[M].New York:John Wiley Publishing,2001.
  • 9GORDON N J,SALMOND D J,SMITH A F M.Novel approach to nonlinear/non-gaussian bayesian state estimation[J].IEE Proceedings -F,1993,140(2):107 -113.
  • 10ARULAMPLAM M S,MASKELL S,GORDON N,et al.A tutorial on particle filters for online nonlinear/nongaussian bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-185.

共引文献32

同被引文献68

  • 1吴仲城,孟明,申飞,戈瑜.一体化结构六维加速度传感器设计[J].仪器仪表学报,2004,25(z1):302-303. 被引量:11
  • 2曹喜滨,张世杰.航天器交会对接位姿视觉测量迭代算法[J].哈尔滨工业大学学报,2005,37(8):1123-1126. 被引量:28
  • 3赵志刚,赵伟.基于动态不确定度理论的多传感器系统传感器失效检测方法[J].传感技术学报,2006,19(6):2723-2726. 被引量:15
  • 4Li T H S, Chen C C, Su Y T. Optical image stabilizing system using fuzzy sliding-mode controller for digital cameras [ J ] . IEEE Transactions on Consumer Electronics, 2012,58 (2) : 237 - 245.
  • 5Peter S, Hubert G. State estimation on flexible robots using accelerometers and angular rate sensors [ J ]. Mechatronics, 2012,22( 8 ) : 1043 - 1049.
  • 6Noureldin A, Karamat T B, Eberts M D, et al. Performance enhancement of MEMS-based INS/GPS integration for low- cost navigation applications [ J ]. IEEE Transactions on Vehicular Technology,2009,58 (3) : 1077 - 1096.
  • 7Wu H H, Lemaire E D, Baddonr N. Activity change-of-state identification using a blackberry smartphone [ J ]. Journal of Medical and Biological Engineering ,2012,32 (4) :265 -272.
  • 8Beravs T, Podobnik J, Munih M. Three-axial accelerometer calibration using kalman filter covariance matrix for online estimation of optimal sensor orientation [ J ]. IEEE Transactions on Instrumentation and Measurement, 2012,61 (9) :2501 -2511.
  • 9Amarasinghe R, Dao D V, Toriyama T, et al. Design and fabrication of a miniaturized six degree of freedom piezoresistive aecelerometer [ J ]. Journal of Micromechanics and Microengineering,2005,15 (9) : 1745 - 1753.
  • 10Amarasinghe R, Dao D V, Toriyama T, et al. Development of miniaturized 6 - axis accelerometer utilizing piezoresistive sensing elements [ J ]. Sensors and Actuators, A- Physical, 2007,134(2) :310 -320.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部