期刊文献+

零维理想的一般准素分解

On General Primary Decomposition for Zero-dimensional Ideals
原文传递
导出
摘要 本文对零维理想关于某个变元是否为正常位置进行讨论,给出零维理想关于某个变元是否为正常位置的等价条件,得到一种较容易的求零维理想准素分解的方法,对某些理想能较快地得到部分准素分支,更有利于对理想进行准素分解. In this paper, we study whether a given zero-dimensional ideal is in normal position with respect to a variable or not, give an equivalence condition of the ideal is in normal position with respect to a variable or not, and obtain a reduced method for primary decomposition of the ideal: Parts of primary components of some ideals can be obtained quickly, which is beneficial to primary decomposition of ideals.
出处 《数学进展》 CSCD 北大核心 2013年第1期34-40,共7页 Advances in Mathematics(China)
基金 国家自然科学基金(No.10071058 No.11071062 No.11271208) 湖南省自然科学基金(No.10JJ3065) 湖南省教育厅项目(No.10A033 No.12C0130) 湖南省研究生教改项目(No.JG2009A017)
关键词 零维理想 准素分解 正常位置 zero-dimensional ideal primary decomposition normal position
  • 相关文献

参考文献2

二级参考文献21

  • 1Buchberger B. An algorithm for finding a basis for the redidue class ring of a zero dimensiomal polynomial, phD thesis, Universitat Innsbruck, Institut fur Mathematik, 1965.
  • 2Buchberger B. A theoretical for the reduction of polynomial to canonical forms. ACM SIGSAM Bull, 1976, 10: 19-29.
  • 3Buchberger B. Grobner bases: An algorithmic method in polynomial ideal theory. N. K. Bose (Ed), Recent Trends in Multidimensional Systems Theory, D. Reidel, Dordrecht, 1985(Chapter 6).
  • 4Hong H. GrSbner bases under composition I. J. Symb. Comput., 1978, 25: 643-663.
  • 5Gutierrez J and San Miguel R. Reduced Grebner bases under composition. J. Symb. Comput., 1998, 26: 433-444.
  • 6Liu J W, Liu Z J and Wang M S. The term orderings which are compatible with composition II. J. Symb. Comput., 2003, 35: 153-168.
  • 7Liu J W, Hou J J, Peng Z Y and Cao W S. The universal Grobner basis under composition. J. of Systems Science and Complexity, 2005, 18(3): 375-382.
  • 8Liu J W and Wang M S. Homogeneous Grobner bases under composition. Journal of Agebra, 2006, 303: 668-676.
  • 9Liu J W and Wang M S. Further results on homogeneous Grobner basis under composition. J. of Algebra, 2007, 315: 134-143.
  • 10Becker T and Weispfenning V. Grobner Bases-A Computational Approach to Commutative Algebra. GTM 141, New York: Springer, 1993.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部