摘要
摘要:设y:M→R^(n+1)是一个光滑连通流形到实仿射空间R^(n+1)的局部强凸浸入超曲面,而且是一个定义在区域Ω(?)R^n上的严格凸函数x_(n+1)=f(x_1,x_2,…,x_n)的图.在α相对法化下,相对抛物型仿射球满足一个四阶非线性偏微分方程组.本文证明了这类抛物型仿射球的一个新的Bernstein性质.
Let y : M → Rn+1 be a locally strongly convex hypersurface immersion of a smooth, connected manifold into the real affine space Rn+1, given as the graph of a strictly convex function x n+1 = f(x1,x2…,xn) defined on a domain Ω C Rn. With the s-relative normalization, the relative parabolic affine hyperspheres satisfy a system of fourth order non- linear partial differential equations. In this paper we prove a new Bernstein property of these relative parabolic affine hyperspheres.
出处
《数学进展》
CSCD
北大核心
2013年第1期106-114,共9页
Advances in Mathematics(China)
基金
supported by NSFC(No.11101129,No.11171091)
Project for Young Teachers of Henan Normal University(No.2011QK03)