期刊文献+

基于两种不同延迟过程的退化系统之最优更换策略 被引量:1

Optimal Replacement Policy For a Deteriorating System Based on Two Different Delayed Processes
原文传递
导出
摘要 将延迟几何过程进行推广并引入延迟α-幂过程,以用于处理退化过程会发生延迟且延迟发生的概率会随故障次数的增多而减小的系统.以系统的故障次数为更换策略,以平均费用率为目标函数,建立了维修更换模型,证明了最优维修更换策略的存在性.最后,通过一个数值例子验证了方法的有效性. A deteriorating repairable system with its degenerative pr, ocess-could be delayed is proposed. Assume that the probability of delayed process is decreasing by tl:ie number of system failure. An explicit expression of average cost rate of such system is given by using generalized delayed geometric process and delayed s-series process with the replacement policy based on the failure number of the system. The optimal replacement policy is derived analytically. Finally, a numerical example is given to validate the model.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第3期171-177,共7页 Mathematics in Practice and Theory
基金 国家科技支撑计划项目(2012BAH25F02) 江西省教育厅青年科学基金(GJJ12507) 江西省自然科学基金项目(20122BAB201044)
关键词 退化系统 延迟α-幂过程 延迟几何过程 更换策略 deteriorating system delayed a-series process delayed geometric process re-placement policy
  • 相关文献

参考文献14

  • 1Lai Y. A note on the optimal replacement problem[J].Advances in Applied Probability,1988,(02):479-482.
  • 2Lam Y. Geometric processes and replacement problem[J].Acta Mathematicae Applicatae Sinica,1988,(04):366-377.
  • 3Zhang YL. A bivariate optimal replacement policy for a repairable system[J].Journal of Applied Probability,1994,(04):1123-1127.
  • 4Zhang YL,Yam RCM,Zuo MJ. Optimal replacement policy for a multistate repairable System[J].Journal of the Operational Research Society,2002,(03):336-341.doi:10.1057/palgrave.jors.2601277.
  • 5Zhang YL,Yam RCM,Zuo MJ. A bivariate optimal replacement policy for a multistate repairable system[J].Reliability Engineering & System Safety,2007,(04):35-542.
  • 6Zhang YL. A geometric process repair model with good-as-new preventive repair[J].IEEE Transactions on Reliability,2002,(02):223-228.doi:10.1109/TR.2002.1011529.
  • 7Wang G J,Zhang YL. A bivariate optimal replacement policy for a cold standby repairable system with preventive repair[J].Applied Mathematics and Computation,2011,(01):3158-3165.
  • 8Braun W J,Li W,Zhao YQ. Properties of the geometric and relate processes[J].Naval Research Logistics,2005,(07):607-616.doi:10.1002/nav.20099.
  • 9Braun W J,Li W,Zhao YQ. Some theoretical properties of the geometric and α-Series processes[J].Communications in Statistics-Theory and Methods,2008,(09):1483-1496.
  • 10Tang YY,Liu YP. An-power process maintenance model for a deteriorating system[J].Jourffal of Sichuan University (Nature Science Edition),2007,(03):503-505.

二级参考文献23

  • 1LAM Y. A note on the optimal replacement problem [J].Advances in Applied Probability, 1988, 20: 479-482.
  • 2LAM Y. Geometric processes and replacement problem [ J]. Acta Mathematics, 1988, 4: 366-377.
  • 3BRAUN W J, LI W, ZHAO Y Q. Properties of the geometric and related processes [J]. Naval Research Logistics, 2005, 52: 607-616.
  • 4BRAUN W J, LI W, ZHAO Y Q. Some theoretical properties of the geometric and a-series processes[J]. Communications in Statistics Theory and Methods, 2008, 37 : 1483-1496.
  • 5TANG Y Y, LIU Y P. An a-power process maintenance model for a deteriorating system [ J ]. Journal of Sichuan University : Nature Science, 2007, 43: 503-505.
  • 6ROSS S M. Stochastic processes [M]. 2nd ed. New York: Wiley, 1996.
  • 7Barlow R E, Hunter L C. Optimum preventive maintenance policy[J]. Operations Research, 1960,8(1) :90 - 100.
  • 8Malik M A K. Reliable preventive maintenance policy[J]. AIIETransactions,1979,11(3) ;221 -228.
  • 9Brown M, Proschan F. Imperfect repair[J]. Journal of Applied Probability ,1983,20(4) :851 - 859.
  • 10Kijima M Some results for repairable systems with general repair[J]. Journal of Applied Probability, 1989,26 (1) : 89 - 102.

共引文献7

同被引文献7

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部