摘要
将延迟几何过程进行推广并引入延迟α-幂过程,以用于处理退化过程会发生延迟且延迟发生的概率会随故障次数的增多而减小的系统.以系统的故障次数为更换策略,以平均费用率为目标函数,建立了维修更换模型,证明了最优维修更换策略的存在性.最后,通过一个数值例子验证了方法的有效性.
A deteriorating repairable system with its degenerative pr, ocess-could be delayed is proposed. Assume that the probability of delayed process is decreasing by tl:ie number of system failure. An explicit expression of average cost rate of such system is given by using generalized delayed geometric process and delayed s-series process with the replacement policy based on the failure number of the system. The optimal replacement policy is derived analytically. Finally, a numerical example is given to validate the model.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第3期171-177,共7页
Mathematics in Practice and Theory
基金
国家科技支撑计划项目(2012BAH25F02)
江西省教育厅青年科学基金(GJJ12507)
江西省自然科学基金项目(20122BAB201044)
关键词
退化系统
延迟α-幂过程
延迟几何过程
更换策略
deteriorating system
delayed a-series process
delayed geometric process
re-placement policy