期刊文献+

Hilbert空间的正交序列与Kubert恒等式

The Orthogonal Sequences in Hilbert Space and Kubert Identities
原文传递
导出
摘要 主要讨论了与Kubert恒等式有关的一些积分性质以及Hilbert空间中的正交序列与Kubert恒等式之间的关系,并给出利用这些关系来构造Hilbert空间中几个具体的正交序列. In this paper, some of integral properties involving Kubert identities were inves- tigated, the relatinship between orthogonal sequences in Hilbert space and Kubert identities is discuessed, and by using the relationships some concrete orthogonal sequences were con- structed.
作者 任刚练
出处 《数学的实践与认识》 CSCD 北大核心 2013年第3期243-248,共6页 Mathematics in Practice and Theory
基金 陕西省自然科学基础研究计划项目(2009JQ1009) 陕西省教育厅自然科学专项计划项目(09JK803) 咸阳师范学院专项科研计划项目(09XSYK104)
关键词 正交序列 HILBERT空间 Kubert恒等式 完全可乘函数 orthogonal sequences hilbert space kubert identity completely multiplicative
  • 相关文献

参考文献10

  • 1Kubert D. The universal ordinary distribution[J].Bulletin De La Societe Mathematique De France,1979,(107):179-202.
  • 2Carlitz L. The multiplication formulas for the Bernoulli and Euler polynomials[J].Proceedings of the American Mathematical Society,1953,(04):184-188.
  • 3Walum H. Multiplication formulae for periodic functions[J].Pacific Journal of Mathematics,1991,(02):383-396.
  • 4Kanemitsu S et. al,Evaluation of spannenintegerals of the product of zeta-functions[J].Integral Transforms & Special Functions,2008,(19):115-128.
  • 5Sun Z W. On covering equivalence,Analytic Number Theory[A].2002.277-302.
  • 6Milnor J. On polylogarithms,Hurwitz zeta-functions,and the Kubert identities[J].Enseignement Math,1983,(29):281-322.
  • 7Romanoff N P. Hilbert spaces and number theory Ⅱ[J].Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy,1951,(15):131-152.
  • 8Mikolás M. Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz[J].Publicationes Mathematicae Debrecen,1957,(05):44-53.
  • 9刘华宁.关于Mbius反转公式的一个推广[J].系统科学与数学,2004,24(1):51-55. 被引量:5
  • 10Chen N X. M(o)bius Inversion in Physics[M].New York:World Scientific,2010.125-145.

二级参考文献3

  • 1Apostol Tom M. Introduction to Analytic Number Theory. New York: Springer-Verlag, I976.
  • 2Chen Nanxian. Modified Mōbius inverse formula and its applications in physics. Phys. Rev. Lett.1990,64: 1193-1195.
  • 3Pindor Andrzej J. Comment on "Modified Mōbius inverse formula and its applications in physics".Phys. Rev. Lett., 1991, 66: 957.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部