期刊文献+

L1空间中带弱奇异核的第二类Fredholm积分方程的数值解法 被引量:3

Numerical Solution Methods for the Second Kind Fredholm Integral Equation with Weakly Singular Kernel in L^1 Space
原文传递
导出
摘要 在L^1空间中,研究带弱奇异核的第二类Fredholm积分方程.将弱奇异核转换成连续核,给出了一种数值求解的算法,并举出具体算例. In L1 Space, we study the second kind Fredholm integral equation with weakly singular kernel. We transform weakly singular kernel into continuous kernel, and obtain a kind of algorithm. After that, the article cites a specific example.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第3期249-253,共5页 Mathematics in Practice and Theory
基金 国家社科基金重大项目(11&ZD180) 黑龙江省自然科学基金项目(A201101) 黑龙江省研究生创新科研项目(YJSCX2011-401HLJ)
关键词 FREDHOLM积分方程 弱奇异核 连续 Fredholm integral equation weakly singular kernel discrete continuation.
  • 相关文献

参考文献9

  • 1M.Thambannair. Linear Operator Equations [M]. World Scientific, 2009.
  • 2P.W.Hemker, H.Schippers. Multiple grid methods for the solution of Fredholm integral equations of the 2nd kind [J]. Math Comput, 1981, 36(2): 215-232.
  • 3R.Piessens. Computing integral transforms and solving integral equations using Chebyshev poly- nomial approximations [J]. J Comp Appl Math, 2000, 121(3): 113-124.
  • 4胡国胜.球面上第二类Fredholm积分方程配置方法[J].数学的实践与认识,2000,30(4):423-427. 被引量:2
  • 5M.Thamban Nair: Linear Operator Equations: Approximation and Regularization [M]. Singapore: World Scientific Publishing Company, 2009.
  • 6Cao Yanzhao, Huang Min, etc. Hybrid collocation methods for Fredholm integral equations with weakly singular kernels [J]. Applied Numerical Mathematics, 2007, 57(3): 549-561.
  • 7W.J. Xie, F.R. Lin. A fast numerical solution method for two dimensional Fredholm integral equations of the second kind[J]. Appl. Numer. Math, 2009, 55(2): 9-19.
  • 8刘光新,贾诺,王辉,张欣.L^1空间中第二类Fredholm积分方程数值解法探究[J].数学的实践与认识,2013,43(1):244-249. 被引量:14
  • 9吕鲲.一类可修复人机系统的最优控制[J].吉林大学学报(理学版),2012,50(2):284-287. 被引量:3

二级参考文献15

  • 1胡国胜.球面上第二类积分方程配置方法[J].工程数学学报,1998,15(1):73-78. 被引量:7
  • 2姚光明,宋文.多目标规划问题的同伦方法[J].黑龙江大学自然科学学报,2007,24(2):253-256. 被引量:4
  • 3陈铭俊.算子方程及其投影近似解[M].广州:广东省科技出版社,1993..
  • 4Dhillon B S,Anuded O C.Common-Cause Failure Analysis of a Non-identical Unitparallel System with ArbitrarilyDistributed Repair Time[J].Microelectron Reliability,1993,33(1):88-103.
  • 5Nianfu Y,Dhillon B S.Availability Analysis of a Repairable Standby Human Machine System[J].MicroelectronReliability,1995,35(11):1401-1413.
  • 6Gupur G,LI Xue-zhi,ZHU Guang-tian.Functional Analysis Method in Queueing Theory[M].Beijing:ResearchInformation Ltd,Hert Fordshire,2001:100-128.
  • 7SHEN Zi-fei,HU Xiao-xiao,FAN Wei-feng.Exponential Asymptotic Property of a Parallel Repairable System withWarm Standby under Common-Cause Failure[J].Journal of Mathematical Analysis and Applications,2008,341(1):457-466.
  • 8Alpert B,Beylkin G,Coifman R,Rokhlin V. Wavelets for the fast solution of second-kind integral equations[J].SIAM Journal on Scientific Computing,1993,(14):159-184.
  • 9Atkinson K E. A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind[M].Philadelphia,PA:SIAM,1976.
  • 10Xie W J,Lin F R. A fast numerical solution method for two dimensional Fredholm integral equations of the second kind[J].Applied Numerical Mathematics,2009,(59):9-19.

共引文献16

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部