期刊文献+

面向C2C电子商务平台的三维个性化推荐方法研究 被引量:1

Research on Three-dimensional Personalized Recommendation Approach for C2C E-commerce Platform
原文传递
导出
摘要 定义C2C电子商务平台中不同于B2C平台的三维推荐空间和推荐问题,并针对该问题提出一种三维个性化推荐方法。该方法对传统二维协同过滤方法和基于内容推荐的方法进行混合和扩展。首先利用卖家特征属性计算卖家相似度,并基于销售关系和卖家相似度对三维评分数据集进行填补,以解决评分数据的稀疏问题,再利用填补后的评分数据计算买家相似度,获取最近邻并预测未知评分。实验证明,该方法能较好地解决C2C平台中的个性化推荐问题,在形成卖家和商品组合推荐时具有较好的性能。 This paper defines a three -dimensional recommendation space and recommendation task in C2C e -commerce platforms, which are different from B2C ones, and proposes a three - dimensional personalized recommendation approach, which extends the traditional two - dimensional collaborative filtering method and content - based recommendation method. The proposed approach firstly calculates seller similarities using seller features, and fills the three - dimensional rating set based on sales relations and seller similarities to solve the data sparsity problem. Then it calculates buyer similarities using historical ratings to decide neighbors and predict unknown ratings. A true data experiment proves that the proposed approach is effective to solve the personalized recommendation problem in C2C platforms and has good performanee when recommending seller and product combinations.
出处 《现代图书情报技术》 CSSCI 北大核心 2013年第1期36-42,共7页 New Technology of Library and Information Service
基金 国家社会科学基金青年项目"移动网络环境下情景敏感的个性化知识推荐机制研究"(项目编号:70971027) 广东省自然科学基金博士启动项目"基于情景感知的多维智能推荐系统研究"(项目编号:S2012040007883)的研究成果之一
关键词 客户对客户 三维推荐 基于内容的推荐 协同过滤 个性化推荐 Customer to Customer Three - dimensional recommendation Content - based recommendation Collaborative filtering Personalized recommendation
  • 相关文献

参考文献15

二级参考文献170

  • 1黎星星,黄小琴,朱庆生.电子商务推荐系统研究[J].计算机工程与科学,2004,26(5):7-10. 被引量:46
  • 2陈冬林,聂规划.基于商品属性隐性评分的协同过滤算法研究[J].计算机应用,2006,26(4):966-968. 被引量:12
  • 3张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 4李绍滋,周昌乐,陈火旺.基于P2P网络的信息过滤与推荐技术研究[J].计算机工程,2006,32(8):45-47. 被引量:5
  • 5Shardanand U, Maes P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995.210-217.
  • 6Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proc. of the Conf. on Human Factors in Computing Systems. New York: ACM Press, 1995. 194-201.
  • 7Resnick P, Iakovou N, Sushak M, Bergstrom P, Riedl J. GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. of the Computer Supported Cooperative Work Conf. New York: ACM Press, 1994. 175-186.
  • 8Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: Addison-Wesley Publishing Co., 1999.
  • 9Murthi BPS, Sarkar S. The role of the management sciences in research on personalization. Management Science, 2003,49(10): 1344-1362.
  • 10Smith SM, Swinyard WR. Introduction to marketing models. 1999. http://marketing.byu.edu/htmlpages/courses/693r/modelsbook/ preface.html

共引文献716

同被引文献49

  • 1中国知网[EB/OL].http://www.cnki.net,2010-10-07.
  • 2WebofScience核心合集[EB/OL].[2014-04-23].http://www.thomsonscientific.com.cn/productsservices/web_of_science/.
  • 3中国电子商务研究中心.2014年“双11”电商大促数据评测[EB/OL].[2015-04一01].http://www.100ec.on/devil--6210488.html.
  • 4Nikolaeva Ralitza, Sriram S. The Moderating Role of Consumer and Product Characteristics on the Value of Customized On-Line Recommendations[J]. Inter- national Journal of Electronic Commerce, 2006, 11(2): 101-123.
  • 5张奇.天猫算法实践[EB/0L].[2014-12-29].http://www.infoq.com/cn/presentations/tianmao-recomlneil一dation-algorithm-practice.
  • 6Ben Schafer J,Joseph A Konstan,John Riedle.Commerce Recommendation Applications [J]. Data Mining and Knowledge Discovery,2011 (5): 115-153.
  • 7中国电子商务研究中心.2014年(上)中国电子商务市场数据监测报告[EB'OL].[2015-04-01].http://www.rvm100ec.cn/zt/2014bndbg/.
  • 8Dong F, Luo JZ, Zhu X, et al.A Personalized Hybrid Recommendation System Oriented to E-Commerce Mass Data in the Cloud[C]//IEEE International Confer- ence on Systems Man and Cybernetics Conference Proc eedings( SMC):IEEE.2013:1020-1025.
  • 9Zhao Wenqing, Han Feifei, Cai Rui, et al. E-commerce Collaborative Filtering Algorithm Research Based on Cloud Computing[J]. Advanced Materials Research, 2014(10): 1566-1569.
  • 10Geng S, Hong Q. Emotional Tendency Contrast Rec- ommendation Algorithm Based on Cloud Model[J]. Journal of Networks, 2014, 9(2): 437-442.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部