期刊文献+

拉格朗日乘子法电力系统网络参数错误辨识研究 被引量:11

Power System Network Parameter Error Identification by Lagrange Multiplier Based Method
下载PDF
导出
摘要 如何辨识出错误的网络参数是电力系统建模中的一个难题。拉格朗日乘子法是一种有效的网络参数错误辨识算法,然而由于计算效率和应用模式问题,这类方法尚难以实现实际应用。为此,基于现有的拉格朗日乘子网络参数错误辨识方法,给出了采用大权重法或修正牛顿法处理零注入约束时该方法的实现模式;针对传统方法的计算效率问题,提出了一种基于稀疏逆矩阵法的拉格朗日乘子协方差矩阵对角元的高效计算方法,以及直接基于状态估计结果,无需反复进行状态估计和参数估计计算的实现模式。该方法提升了拉格朗日乘子法的计算效率,为这类方法的实际应用提供了条件。 The identification of the network parameter errors is a puzzling problem in power system modeling.Lagrange multiplier method is an effective network parameter error identification approach.However,the practical application of this method is difficult due to its calculation burden and application procedure problems.Based on the existing researches on Lagrange multiplier method,the procedure using large weights or modified Newton methods to deal with zero injection constraints was presented.To improve calculation efficiency,an efficient algorithm to calculate the value of the diagonal elements of the covariance matrix of Lagrange multipliers based on sparse inverse matrix method was proposed;and the implementation method directly based on a single state estimation calculation was proposed,in which reiterative state estimation or parameter estimation is not necessary.This research improves the calculation efficiency of the Lagrange multiplier method and makes this method fitful for practical application.
出处 《中国电机工程学报》 EI CSCD 北大核心 2013年第7期86-91,15,共6页 Proceedings of the CSEE
基金 国家高技术研究发展计划(863计划)(2011AA05A118) 国家杰出青年基金资助项目(51025725)~~
关键词 电力系统 参数错误 状态估计 拉格朗日乘子 稀疏逆矩阵法 零注入 power systems parameter error state estimation Lagrange multipliers sparse inverse matrix method zero injection
  • 相关文献

参考文献18

  • 1Zarco P,Exposito A G. Power system parameterestimation: a survey [J]. IEEE Trans, on Power Systems,2000, 15(1): 216-222.
  • 2Fletcher D, Stadlin W . Transformer tap positionestimation[J]. IEEE Trans, on Power Apparatus andSystems, 1983, 102(11): 3680-3686.
  • 3Liu W HE,WuFF, Lun S M. Estimation of parametererrors from measurement residuals in state estimation[J].IEEE Trans, on Power Systems, 1992,7(1): 81-89.
  • 4Mukheijee B, FuerstG,Hanson S, et al Transformer tapestimation: field experience[J]. IEEE Trans, on PowerApparatus and Systems, 1984, 103(6): 1454-1458.
  • 5Quintana V,Van Cutsem T. Real-time processing oftransformer tap positions[J] . Canadian Journal ofElectrical and Computer Engineering,1987,12(4):171-180.
  • 6陈晓刚,易永辉,江全元,曹一家,陶佳,蒋正威.基于WAMS/SCADA混合量测的电网参数辨识与估计[J].电力系统自动化,2008,32(5):1-5. 被引量:58
  • 7Smith R. Transformer tap estimation at Florida powercorporation[J]. IEEE Trans, on Power Apparatus andSystems, 1985,104(12): 3442-3445.
  • 8Van Cutsem T,Quintana V. Network parameter estimationusing online data with application to transformer tapposition estimation[J]. Proceedings of the Institution ofElectrical Engineers, 1988,135(1): 31-40.
  • 9Liu W,Lim S. Parameter error identification andestimation in power system state estimation[J]. IEEETrans, on Power Systems,1995,10(1): 200-209.
  • 10Alsac O,Vempati N,Stott B,et al Generalized stateestimation[J]. IEEE Trans, on Power Systems, 1998,13(3): 1069-1075.

二级参考文献51

共引文献105

同被引文献122

引证文献11

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部