期刊文献+

自适应二阶总广义变分图像恢复方法 被引量:17

Image restoration method with adaptive second order total generalized variation
原文传递
导出
摘要 针对经典的总变分(TV)去噪模型容易导致阶梯效应的缺陷,提出了一种自适应的二阶总广义变分(TGV)图像恢复模型。通过在二阶TGV正则项中引入边缘指示函数,并利用边缘指示函数在平滑区域,增强扩散,去除噪声,在边缘处降低扩散,保护边缘等特征恢复图像,在新模型中,自适应二阶总广义变分是正则项,它能自动的平衡一阶和二阶导数项。因此这些特征使得新模型在去噪的同时不但能够自适应地保持图像的边缘信息,而且还能去除阶梯效应。为了有效的计算该模型,本文采用原始一对偶算法仿真新模型,实验结果表明,与经典的TV模型相比,改进的方法无论是在视觉效果还是信噪比(SNR)上都有明显地提高。 Aimming at the drawback of the classical total vaiational denoising model in which the staircas- ing effect is often produced, an improved image restoration model based on adaptive second order total generalized variation (TGV) is proposed in this paper. In the new model, an edge indicator function is in- troduced in the regularization term of second order total generalized variation. The proposed model makes use of the advantages of the edge indicator function that can improve the diffusion and remove the noise in the image smooth region,and reduce the diffusion and protect the edges in the image non-smooth re- gion to restore the noisy image. The adaptive second order total gneralized vairation is the regularization term in the proposed model ,which can automatically balance the first order and second order derivative. So these characteristics make the new model preserve the edge information better and avoid the staircas- ing effect while removing noise. In order to solve the proposed model effectively,the primal-dual method is used in this paper. The experimental results show that compared with the existing congeneric algo- rithms, the new model removes the existing noise effectively and preserves the edges of image while avoi- cling the staircasing effect. Therefore, the restored results are improved in both visual effects and signal to noise ratio (SNR).
出处 《光电子.激光》 EI CAS CSCD 北大核心 2013年第2期378-383,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60872138 61105011) 河南科技大学博士科研基金(09001708)资助项目
关键词 图像恢复 总广义变分(TGV) 边缘指示函数 阶梯效应 image restoration total generalized variation (TGV) edge indicator function staircasing effect
  • 相关文献

参考文献3

二级参考文献40

  • 1付树军,阮秋琦,李玉,王文洽.基于各向异性扩散方程的超声图像去噪与边缘增强[J].电子学报,2005,33(7):1191-1195. 被引量:22
  • 2张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 3Smith S M, Brady J M. SUSAN-A new approach to low level image processing[J]. International Journal of Com- puter Vision, 1997,23(7) :45-48.
  • 4Bellavis F, Tegolo D, Valenti C. Improving harris corner selection strategy[J], IET Computer Vision, 2011,5 (2) : 87-96.
  • 5LIU Jun-jie, Jakas A, AI-Obaidi A, et al. A Comparative study of different corner detection methods[A]. Proceed- ings of IEEE International Symposium on Computational Intelligence in Robotics and Automation,OlRA[C]. Kore- a,2009,509-5]4.
  • 6He X C,Yung N H C, Corner detector based on global and local curvature properties[J]. Optical Engineering, 2008, 47(5) :057008-1-12.
  • 7ZHU Guang-yu,Doermann D. Logo matching for document image retrieval[A]: 10^th Document Analysis and Recong- nition[C]. 2009,606-610.
  • 8YANG Xiao-dong, TIAN Ying-li. Robust door detection in unfamiliar environments by combining edge and corner features[A]. Computer Vision and Pattern Workshops(CVPRW)[C]. 2010,57-64.
  • 9Rattarangsi A,Chin R T. Scale-based detection of corners of planar curves[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,1992,14(4) :430-449.
  • 10Babaud J,Witkin A P, Baudin M,et al. Uniqueness of the Gaussian kernel for scale-space filtering[J]. IEEE Trans- action on Pattern Analysis and Machine Intelligence, 1986, PAMI-8 (1) : 26-33.

共引文献10

同被引文献177

  • 1钱霖.基于两帧图像“亚像元”技术的插值方法研究[J].激光与红外,2004,34(4):308-311. 被引量:10
  • 2王忠谦,朱宁.基于三次样条插值的图像放大的离散算法[J].苏州大学学报(自然科学版),2005,21(2):7-11. 被引量:12
  • 3刘卜,屈有山,冯桂兰,杨秀芳,相里斌.小波双线性插值迭代算法应用于光学遥感图像[J].光子学报,2006,35(3):468-472. 被引量:22
  • 4谢文科,姜宗福.气动光学畸变波前的本征正交分解和低阶近似[J].中国激光,2007,34(4):491-495. 被引量:8
  • 5Rudin L, Osher S, Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D, 1992,60(1/4) : 259-268.
  • 6Bredies K,Kunisch K,Pock T.Total generalized variation[J]. SIAM J Imaging Sciences,2010,3(3):492-526.
  • 7Bredies K, Valkonen T.Inverse problems with second-order total generalized variation constraints[C]//Proceedings of SampTA 2011-9th International Conference on Sampling Theory and Applications, Singapore, 2011.
  • 8Knoll F,Bredies K,Pock T,et al.Second order total gener- alized variation (TGV)for MRI[J].Magnetic Resonance in Medicine, 2011,65 (2) : 480-491.
  • 9Xu Jianlou,Feng Xiangchu,Hao Yan,et al.Image decompo- sition using adaptive second order total generalized varia- tion[J].Signal, Image and Video Processing, DOI 10.1007/ s 11760-012-0420-3.
  • 10Chambolle A, Pock T.A first-order primal-dual algorithm for convex problems with applications to imaging[J].Joumal Math- ematical Imaging Vision,2011,40( 1 ) : 120-145.

引证文献17

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部