期刊文献+

基于Weierstrass-Mandelbrot函数的分形风速脉动仿真 被引量:7

On the Use of Weierstrass-Mandelbrot Function to Simulate Fractal Wind Fluctuations
下载PDF
导出
摘要 实际风速脉动普遍具有自相似分形特征,而传统的谐波合成法和线性滤波法仿真的风速脉动均不具有自相似分形特征。因此,基于随机型Weierstrass-Mandelbrot函数,设计了一种能够仿真自相似风速脉动的方案。其中,表征风速脉动自相似特征的重要参数分形维度可与湍流惯性区能谱的幂指数建立联系。将该方案仿真的风速脉动与实际风速脉动一些重要的统计特征,如功率谱和概率密度函数等,进行了比较,结果表明提出的新方案能有效仿真风速脉动的中高频变化及其概率分布特征。 Classical methods, such as the harmonic wave superimposing method and the linear filtering method, cannot simulate the universal fractal feature of wind fluctuations. The authors proposed a simple method using the stochastic Weierstrass-Mandelbrot function to simulate wind fluctuations with the fractal feature. The fractal dimension, which is an important parameter that describes the fractal feature of wind fluctuations, can be related to the exponents of the inertial-range spectrum. Simulation results show that the method can effectively simulate the probability distributions and variations of wind fluctuations in the medium-high frequency range.
出处 《气候与环境研究》 CSCD 北大核心 2013年第1期43-50,共8页 Climatic and Environmental Research
基金 国家自然科学基金项目41105005 40775018 90715031
关键词 风能技术 风速脉动 分形仿真 Weierstrass-Mandelbrot函数 wind energy technology wind fluctuations fractal simulation Weierstrass-Mandelbrot function
  • 相关文献

参考文献5

二级参考文献37

  • 1李东东,陈陈.风力发电机组动态模型研究[J].中国电机工程学报,2005,25(3):115-119. 被引量:182
  • 2刘锡良,周颖.风荷载的几种模拟方法[J].工业建筑,2005,35(5):81-84. 被引量:127
  • 3李东东,陈陈.风力发电系统动态仿真的风速模型[J].中国电机工程学报,2005,25(21):41-44. 被引量:109
  • 4郭金东,赵栋利,林资旭,许洪华.兆瓦级变速恒频风力发电机组控制系统[J].中国电机工程学报,2007,27(6):1-6. 被引量:106
  • 5Schaumarma P, WilkeFourth F. Current developments of support structures for wind turbines in offshore environment[C]. International Conference on Advances in Steel Structures, Shanghai, China, 2005.
  • 6Ahsan Kareem. Numerical simulation of wind effects: a probabilistic perspective[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008(96): 1472-1497.
  • 7Shinozuka M. Simulation of multivariate and multidimensional random process[J]. Journal of the Acoustical Society of America, 1971, 49(1): 357-367.
  • 8Shinozuka M, Jan C M. Digital simulation of random process and its application[J]. Journal of Sound and Vibration, 1972, 25(1): 111-128.
  • 9Samras E, Shinozuka M, Tsurui A. ARMA representation of random process[J]. Journal of Engineering Mechanics, ASCE, 1985, 111(3): 449-461.
  • 10Yang J. Simulation of random envelope process[J]. Journal of Sound and Vibration, 1972, 25(1): 73-85.

共引文献158

同被引文献52

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部