期刊文献+

基于正交信号校正和稳健回归的带钢酸洗浓度预测模型 被引量:3

Acid concentration prediction model of steel pickling process based on orthogonal signal correction and robust regression
原文传递
导出
摘要 为了实时获得冷轧带钢酸洗溶液的浓度值,便于进行酸浓度控制,采用软测量方法实时预测酸浓度.由于酸浓度建模数据中无关成分和特异点会影响模型精度,利用正交信号校正和稳健回归相结合的方法来建立酸浓度预测模型首先利用正交信号校正对建模数据进行预处理,去除自变量中与因变量无关的成分;然后采用基于迭代加权最小二乘的稳健回归算法进行建模,降低特异点对模型的影响;最后将预测结果和多元线性回归、传统稳健回归方法和正交信号校正多元线性回归进行比较.实验结果表明:采用正交信号校正-稳健回归方法后,模型预测能力得到提高,与多元线性回归结果相比,亚铁离子质量浓度和氢离子质量浓度的相对预测误差分别从1.82%降低到1.17%、从5.87%降低到4.73%.本文提出的方法具有更好的模型预测精度,可以满足工业应用要求. In order to get and control acid concentration values in cold-rolled strip steel pickling, a soft measurement method was proposed for real-time predicting the acid concentration. Because of the influence of irrelevant components and outliers in acid concentration data on the accuracy of the acid concentration prediction model, orthog- onal signal correction (OSC) and iterative weighted least squares (IRLS) regression were combined to build the model. Firstly, orthogonal signal correction was used to remove irrelevant components which have nothing to do with tile mea- sured variables. Then robust regression based on the iteratively reweighted least squares algorithm was applied in the model to reduce the influence of outliers. Finally, the prediction results were compared with multiple linear regression (MLR), IRLS, and OSC-MLR. It is found that OSC-IRLS has the best prediction accuracy. In comparison with MLR, the relative error of OSC-IRLS decrease from 1.82% to 1.17% in predicting the concentration of ferrous ions and from 5.87% to 4.73% in predicting the concentration of hydrogen ions. The proposed method has a better model prediction accuracy to meet the requirements of industrial applications.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2013年第2期242-248,共7页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(51004013 51204018) 高等学校博士学科点专项科研基金资助项日(20110006110027) "十二五"国家科技支撑计划资助项目(2012BAF04B02) 中央高校基本科研业务费专项(FRF-TP-12-167A FRF-AS-09-008B)
关键词 冷轧 带钢 酸洗 浓度 预测 数学模型 cold rolling strip steel pickling concentration prediction mathematical models
  • 相关文献

参考文献13

  • 1何轶,何春来.酸浓度控制系统的研究[J].冶金设备,2007(S2):19-24. 被引量:1
  • 2Nonaka T,Kataoka T,Esaki K. Method and Apparatus for Measurement and Automatic Control of Acid Concentration[P].United States Patent,US 6396280 B1,2002.
  • 3Takeuchi K,Nonaka T,Kataoka T. Continuous Pickling Method and Continuous Pickling Apparatus[P].United States Patent,US 2004/0149323 A1,2004.
  • 4沈福磊,张培.带离线检测补偿的酸浓度控制系统[J].自动化仪表,2011,32(1):45-47. 被引量:3
  • 5Kittisupakorn P,Thitiyasook P,Hussian M A. Neural network based model predictive control for a steel picking process[J].Journal of Process Control,2009,(04):579.
  • 6王建国,阳建宏,云海滨,徐金梧.改进粒子群优化神经网络及其在产品质量建模中的应用[J].北京科技大学学报,2008,30(10):1188-1193. 被引量:19
  • 7Ghorbani R,Ghasemi J,Abdollahi B. Conductometric simultaneous determination of acetic acid,monochloroacetic acid and trichloroacetic acid using orthogonal signal correction-partial least squares[J].Journal of Hazardous Materials,2006,(1-3):13.
  • 8张娴,袁洪福,郭峥,宋春风,李效玉,谢锦春.正交信号校正应用于多元线性回归建模的研究[J].光谱学与光谱分析,2011,31(12):3228-3231. 被引量:9
  • 9Daszykowski M,Kaczmarek K,Vander Heyden Y. Robust statistics in data analysis a review:basic concepts[J].Chemometrics and Intelligent Laboratory Systems,2007,(02):203.
  • 10Allison P D. Multiple Regression:a Primer[M].Thousand Oaks,CA:Pine Forge Press,1999.

二级参考文献31

共引文献39

同被引文献18

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部