期刊文献+

神经网络在GRAPPA算法中的应用 被引量:1

Application of neural networks in the GRAPPA algorithm
下载PDF
导出
摘要 将神经网络引入到传统GRAPPA算法中,通过神经网络来训练GRAPPA权重系数,然后再利用欠采样数据进行重建。实验结果表明,将神经网络引入到GRAPPA算法中,可以重建出质量较好的图像。 This paper introduces the neural networks in traditional GRAPPA algorithm. Neural networks is used for GRAPPA weight coefficient training, then using under-sampled data to reconstruet. The experiment results show that introducing the neural networks into the GRAPPA algorithm can reconstruct images with good quality.
出处 《微型机与应用》 2013年第4期45-47,共3页 Microcomputer & Its Applications
关键词 GRAPPA 神经网络 自适应BP GRAPPA neural networks adaptive BP
  • 相关文献

参考文献8

二级参考文献68

  • 1周敏,张敏鸣,刘琳.磁共振成像中的敏感性编码技术[J].中国医疗器械杂志,2005,29(3):196-198. 被引量:1
  • 2陈武凡.并行磁共振成像的回顾、现状与发展前景[J].中国生物医学工程学报,2005,24(6):649-654. 被引量:19
  • 3夏爽,祁吉.MR并行采集技术的优势[J].国外医学(临床放射学分册),2006,29(5):348-353. 被引量:18
  • 4Lauterbur PC.Image formation by induced local interactions:examples employing nuclear magnetic resonance[J].Nature,1973,242:190-191.
  • 5Sodickson DK,McKenzie CA.A generalized approach to parallel magnetic resonance imaging[J].Medical Physics,2001,28 (8):1629-1643.
  • 6McGibney G,Smith MR,Nichols ST,et al.Quantitative evaluation of several partial Fourier reconstruction algorithms used in MRI[J].Magnetic Resonance in Medicine,1993,30(1):51-59.
  • 7Pruessmann KP,Weiger M,Scheidegger MB,et al.SENSE:Sensitivity eneoding for fast MRI[J].Magnetic Resonance in Medicine,1999,42 (5):952-962.
  • 8Sodickson DK,Manning WJ.Simultaneous acquisition of spatial harmonics (SMASH):fast imaging with radiofrequeucy coil arrays[J].Magnetic Resonance in Medicine,1997,38(4):591-603.
  • 9Tsao J,Behnia B,Webb AG.Unifying linear prior-informationdriven methods for accelerated image acquisition[J].Magnetic Resonance in Medicine,2001,46(4):652-660.
  • 10Jones RA,Haraldseth O,Muller TB,et al.K-space substitution:a novel dynamic imaging technique[J].Magnetic Resonance in Medicine,1993,29(6):830-834.

共引文献28

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部