期刊文献+

平面曲线的切割函数的第二参数可导性

Derivability of Tangent and Secant Function on Plane Curve with Second Variable
下载PDF
导出
摘要 目的研究平面曲线的切割函数关于第二参数的可导性。方法先构造一组形式计算公式,再使用几何分析法。结果得到了平面曲线的切割函数关于第二参数的一阶导数和二阶导数的表达式,以及它们在间断点处的极限值。结论平面曲线的切割函数关于第二参数是可导的,并且它的一阶导数和二阶导数都连续。 Objective To explore derivability of tangent and secant function on plane curve with the second variable. Methods A group of computation formula were constructed and geometry analysis meth- od was used. Results The first derivative and the second derivative expression of the tangent and secant function about the second parameter were obtained, as well as the limits of the discontinuity points of the tangent and secant function. Conclusion The tangent and secant function is derivable about the second parameter, and its first derivatives and second derivatives are continuous.
出处 《河北北方学院学报(自然科学版)》 2013年第1期3-7,共5页 Journal of Hebei North University:Natural Science Edition
关键词 切割函数 一阶导数 二阶导数 第二参数 tangent and secant function first derivative second derivative the second parameter
  • 相关文献

参考文献6

二级参考文献31

  • 1Blum H. Biological shape and visual science [J]. J Theoret Biol, 1973, 38:205-287.
  • 2Brady M. Criteria for representations of shape [M]. New York: Academic Press, 1983:23-34.
  • 3Bruce M, Giblin PJ, Gibson CG. Symmetry set[J].Proc Royal Soc, 1985, 101A: 163-186.
  • 4Giblin PJ, Brassett SA. Local symmetry of plane curves [J]. Amer Math Monthly, 1985, 92:689-707.
  • 5Peter J, Gibin, Donal BO. The Bitangent Sphere Problem [J]. Amer Math Monthly, 1990, 97:5-23.
  • 6John WR. Geometry of Curves [M]. Orange: Chapman and Hall/CRC, 1935:56-231.
  • 7Gelman A, Carlin JB, Stern HS, et al. Bayesian Data Analysis (2nd Edition) [M]. Orange: Chapman HalI/CRC. 2004 :45-67.
  • 8Blum H. Biological shape and visual science[J].J Theoret Biol, 1973, 38:205-287.
  • 9Brady M. Criteria for representations of shape [M]. New York: Academic Press, 1983. 23-34.
  • 10Bruce M, Giblin PJ, Gibson CG. Symmetry set[J]. Proc Royal Soc 1985, 101A: 163-186.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部