期刊文献+

大应变条件海水浸蚀下人工胶结土动力特性研究 被引量:1

Effect of sea water attack on dynamic behavior of artificially cemented sand in large strain
下载PDF
导出
摘要 随着海洋经济的发展,越来越多的近海设施出现,却对结构基础的耐久性提出了严峻的要求。本文将研究人工胶结土在海洋环境下长期动力特性的演化。本研究将利用动三轴试验获得不同浸蚀时间对人工胶结土的动剪切模量和阻尼比的影响。研究结果显示在海洋环境下,人工胶结土的水化反应受到严重的影响,动剪切模量比正常水环境下明显减小,而阻尼比比正常水环境下明显增大;试验还发现盐的结晶效应非常明显,尤其在干湿交替环境下,可能会对胶结作用形成破坏;在对饱和水泥土的动三轴试验发现随着浸蚀时间的增长,水泥土的抵抗液化的能力增强。结论显示水泥土改良软弱地基的能力强,也为工程设计提供参考。 The offshore and the onshore structures are emerging in China. Reliability and durability of these structures are critical for development in ocean economy. The aim of this study is to evaluate the dynamic behavior of cemented sand under seawater attack in long term. The cyclic triaxial apparatus is employed to show the evolution of shear modulus and damping ratio of the cemented sand in terms of soaking period (SP) and cement content (CC).The results show that the cementation process is affected by the seawater to an extent compared to the sample in tap water. The shear modulus in seawater is smaller than that in tap water; while the damping ratio increases significantly as the soaking period increases and is higher than that in tap water. Also, the crystallization of salts could be clearly observed,which probably explains the evolution of dynamic behavior of cemented sand. The undrained cyclic triaxial tests show the liquefaction resistance has been enhanced with the increasing of soaking periods. Finally, it is concluded that merely slight cementation for sand can significantly improve the dynamic behavior of theground.
出处 《地震工程与工程振动》 CSCD 北大核心 2013年第1期192-197,共6页 Earthquake Engineering and Engineering Dynamics
基金 国家自然科学青年基金项目(41202816) 浙江省自然科学青年基金项目(LQ12E08007) 浙江省自然科学青年基金项目(LQ12E08006) 广西岩土力学与工程重点实验室资助课题(11-KF-08)
关键词 人工胶结土 动剪切模量 阻尼比 海水浸蚀 液化 artificial cemented sand shear modulus dynamic damping seawater attack liquefaction
  • 相关文献

参考文献14

  • 1Saxena S K, Avramidis A S, Reddy, et al. Dynamic moduli and damping ratios for cemented sand at low strains [ J ]. Canadian Geotechnical Jour- nal, 1988, 25:353 -368.
  • 2Consoli N C, Rotta G V,Prietto,et al. Influence of curing under stress on the triaxial response of cemented soils [ J ]. Geotechnique, 2000, 50 (1) :99 -105.
  • 3Rosa F D, Consoli N C, Baudet B A. An experimental investigation of the behaviour of artificially cemented soil cured under stress[ J]. Geotech- nique, 2008, 58(8):675-679.
  • 4Jiang M J(蒋明镜), Sun Y G, Xiao Y. An experimental investigation on the mechanical behavior between cemented granule[ J]. Geotechnical Testing Journal (ASCE), 2012. (in press).
  • 5Maher M H, Ro K S, Welsh J P. High strain dynamic modulus and damping of chemically grouted sand [ J]. Soil Dynamics and Earthquake Engi- neering,1994 13(2) :131 - 138.
  • 6Fernandez A L, Santamarina J C. Effect of cementation on the small-strain parameters of sands [ J ]. Canadian Geotechnical Journal, 2001,38:191 - 199.
  • 7Delfosse-Ribay E, Djeran-Maigre I, Richard,et al. Shear modulus and damping ratio of grouted sand [ J]. Soil Dynamics and Earthquake Engi- neering, 2004, 24:461 - 471.
  • 8Liu G. Verification of shear wave velocity based liquefaction criteria using centrifuge model [ D]. Ph. D dissertation, Department of Civil Engineer- ing, Case Western Reserve University, 2009.
  • 9Mehta, P K. Durability of concrete in marine environment-a review [ J]. American Concrete Institute, 1980, SP65 - 01 : 1 - 20.
  • 10Chen J, Jiang M, Zhu J. Damage evolution in cement mortar due to erosion of sulfate [ J]. Corrosion Science,50:2478 -2483.

同被引文献13

  • 1Gallagher, P. M. and Mitchell, J. K. Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand [ J ]. Soil Dynamics and Earthquake Engineering, 2002,22 ( 9), 1017 - 1026.
  • 2Clough, G W, Iwabuchi, J, Rad, N S, et al. Influence of cementation on liquefaction of sands [ J ]. Journal of Geotechnical Engineering, 1989,115 (8) : 1102-1117.
  • 3Saxena, S K, Avramidis, A S and Reddy, K R. Dynamic moduli and damping ratios for cemented sand at low strains [ J ]. Canadian Geotechnical Journal, 1988,25 : 353-368.
  • 4Baig, S, Picornell, M, and Nazarian, S. Low strain shear moduli of cemented sands [ J ]. ASCE, Journal of Geotechnical and Geoenviromental Engineering, 1997, 123 (6) :540-545.
  • 5Delfosse-Ribay, E, Djeran-Maigre, I, Richard, C., et al. Shear modulus and damping ratio of grouted sand [ J ]. Soil Dynamics and Earthquake Engineering, 2004, 24:461-471.
  • 6Mirza, S. Durability and sustainability of infrastructure-a state of the art report [ J ]. Canadian Journal of Civil En- gineering, 2006,33 ( 6), 639-649.
  • 7Mehta, P K. Durability of concrete in marine environment-a review [ J ]. American Concrete Institute, 1980,SP65-01 : 1-20.
  • 8Chen, J, Jiang, M, Zhu, J. Damage evolution in cement mortar due to erosion of sulfate [ J ]. Corrosion Science, 50 : 2478-2483.
  • 9ASTM D4015-07 Standard Test Methods for Modulus and Damping of Soils by Resonant-Column Method, A- merican Society for Testing and Materials, Annual Book of Standards. 2007. ASTM D3999-11.
  • 10Standard Test Methods for the Determi- nation of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部