期刊文献+

一类新的椭圆混合边值问题无穷多正解的存在性

Existence of Infinitely Positive Solutions to a New Elliptic Mixed Boundary Value Problem
下载PDF
导出
摘要 研究了一类新的椭圆混合边值问题无穷多正解的存在性,当非线性项f(x,u)关于u在无穷远处满足超线性且满足次临界增长时,利用山路定理证明了该混合边值问题至少存在一个正解.利用迹定理和Sobolev嵌入定理证明了无穷多正解存在性定理. The existence of infinitely positive solutions to a new elliptic mixed boundary value problem has been studied. When nonlinear term f(x, u) is super-linear with respect to at infinity, and f(x,u) is subcritical growth, the mixed boundary value problem has at least one positive solution, which is proved by Mountain Pass Theorem. Furthermore, the trace theorem and Sobolev embedding theorem are applied to the proof of the existence of positive solutions.
作者 李国发
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第1期26-28,39,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金天元基金(10926167) 云南省教育厅科学研究基金(2012Y410)
关键词 边值问题 P-LAPLACIAN算子 山路定理 超线性 boundary value problem p-Laplacian operator mountain pass theorem super linear
  • 相关文献

参考文献8

  • 1I.iu Haihong, Su Ning. Well-posedness for a class of mixed problem of wave equations[J]. Nonlinear Analysis,2009,71:17-27.
  • 2I.i Guofa. Existence of positive solutions of elliptic mixed boundary value problem[J]. Boundary Value Problems,2012(6) :91.
  • 3李国发.一类二阶两点边值特征值问题的非平凡解[J].曲靖师范学院学报,2011,30(6):33-35. 被引量:2
  • 4Xu Zhonghai, Liu Shengquan, Feng Zhenguo. Existence and regularity of solution of mixed boundary value problem of a Busemann-equa- tion with nonlinear absorb term[J]. Journal of Mathematical Analysis and Applications,2009,357:183- 190.
  • 5曾云辉,魏跃进.一类带高阶Laplace算子偏微分方程系统解的振动性[J].河南师范大学学报(自然科学版),2008,36(5):30-32. 被引量:4
  • 6梁月亮,续晓欣.一类三点边值问题两个单调递增正解的存在性[J].河南师范大学学报(自然科学版),2010,38(5):31-33. 被引量:1
  • 7Lions J I., Magenes E. Non homogeneous Boundary Value Problems and Applications[M]. Berlin:Springer, 1972:13-200.
  • 8Ambrosetti A, Rabinowitz P H. Dual variational methods in critical points theory and applications[J]. J Funct Anal, 1973,14:349-381.

二级参考文献11

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部