期刊文献+

FitzHugh神经系统中的无穷远奇点及闭轨的存在性 被引量:3

Degenerate Equilibria at Infinity and the Existence of Closed Orbit in the FitzHugh Nerve System
下载PDF
导出
摘要 研究了一类多项式生物系统的定性性质.通过研究沿特殊方向轨线的数目和走向来分析无穷远奇点的定型性质,并且对一类特殊情形b=0给出了FitzHugh神经系统中闭轨的存在唯一性条件. In this paper we consider a polynomial differential system, which was given from the squid giant axon membrane. By determining characteristic directions and the numbers of orbits which go towards or away from those equilibria in characteristic direc- tions, we analyze qualitative properties of its equilibria at infinity. For b = 0, we give necessary and sufficient conditions for existence of closed orbits, and prove that the system has a unique closed orbit if it exists.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期18-22,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11101295) 四川省教育厅自然科学重点基金(12ZA086)资助项目
关键词 无穷远奇点 Ponincaré-Bendixson环域 Briot-Bouquet变换 Poincaré变换 正常区域 闭轨 LIÉNARD系统 equilibrium at infinity Ponincare-Bendixson ring domain Briot-Bouquet transformation Poincare transformation normal sector closed orbit, Lienard system
  • 相关文献

参考文献16

  • 1Hodgkin A,Huxley A. A quantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of Physiology,1952.500-544.
  • 2Sugie J,Yamamoto M. On the existence of periodic solutions for the FitzHugh nerve system[J].Mathematica Japonica,1990,(04):759-767.
  • 3Troy W C. Oscillation phneomena in the Hodgkin-Huxley equations[J].Roy Soc Edin Proc,1976.299-310.
  • 4FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane[J].Biophysical Journal,1961.445-466.
  • 5Sugie J. Nonexistence of periodic solutions for the FitzHugh nerve system[J].Quarterly of Applied Mathematics,1991.543-554.
  • 6Kaumann E,Staude U. Uniqueness and nonexistence of limit cycles for the FitzHugh equation[A].New York:springer-verlag,1983.313-321.
  • 7Treskov S A,Volokitin E P. On existence of periodic solutions for the FitzHugh nerve system[J].Quarterly of Applied Mathematics,1996.601-607.
  • 8Geogescu A,Rocsoreanu C,Giurgiteau N. FitzHugh-Nagumo Model:Bifurcation and Dynamic[M].Dordrecht:Kluwer Academic Publisher,2000.
  • 9Rocsoreanu C,Giurgiteau N,Geogescu A. Connections between saddles for the FitzHugh-Nagumo system[J].International Journal of Bifurcation and Chaos,2001,(02):533-540.
  • 10Geogescu A,Rocsoreanu C,Giurgiteau N. Global bifurcation in FitzHugh-Nagumo model[A].2003.197-202.

同被引文献21

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部