期刊文献+

含有碳链通道的石墨烯纳米带电子特性的第一性原理研究 被引量:7

First Principle Calculation on the Electronic Properties of Graphene Nanoribbons with Carbon Chains
下载PDF
导出
摘要 采用第一性原理的密度泛函理论结合非平衡格林函数的计算方法,研究了含有多碳链通道的石墨烯纳米带的原子结构、电子能带结构与电子输运特性.结果表明,移除大量原子后含有双碳原子链的纳米带的能隙显著增大,这说明电子从占据态到未占据态的跃迁将更加困难;并且最高占据子能带与最低未占据子能带几乎与费米能级平行,说明边缘态几乎完全消失.电子输运特性的计算结果与电子能带结果是自洽的,碳链的引入导致纳米带电导隙的增大和费米能级位置电导的湮没.这说明通过电子束轰击的方式裁剪纳米带的原子结构来制备集成度更高、尺度更小的一维半导体纳米器件是可行的. Using the first principle density functional theory combined with the non-equilibrium Green' s function technology, we investigate the atomic structure, electronic band structures and electron transport properties of graphene nanoribbons with carbon chains. The present results reveal that the band gap of the graphene nanoribbons (GNRs) with carbon chains is increased, indicating that it is unfavorable for the electronic transition between the occupied states and the unoccupied states in this uanostructure. Moreover, it is found that the highest occupied suhband and the lowest unoccupied subband become dispersionless and almost parallel to the Fermi level, suggesting the edge state observed in the pristine GNR is absent in the defective nanostructure. Electronic transport result shows a good consistency with the electronic band structures results, that is, the presence of the carbon chains leads to the increasing of GNR' s conductance gap and the absence of the striking conductance peak in the vicinity of the Fermi level. The present results suggest the possibility of new approaches to tailor the atomic nanostructure by energetic electron irradiation to make more integrated and smaller nanodeviee based on the one-dimensional nanostructures.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期87-91,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11047176) 湖北省教育厅科学研究项目(Q20111305和B20101303)资助项目
关键词 第一性原理 石墨烯纳米带 原子结构 电子能带结构 first principle graphene nanoribbon atomic structure electronic band structure
  • 相关文献

参考文献26

  • 1Son Y Wi,Cohen M L,Louie S G. Half-metallic graphene nanoribbons[J].Nature,2006.347-349.
  • 2任文才,成会明.石墨烯:丰富多彩的完美二维晶体——2010年度诺贝尔物理学奖评述[J].物理,2010,39(12):855-859. 被引量:4
  • 3Son Y Wi,Cohen M L,Louie S G. Energy gaps in graphene nanoribbons[J].Physical Review Letters,2006,(21):216803.
  • 4颜浩然,霍新霞,王畅,TERENCE K.S.W,王利光.锯齿形石墨烯带(7-ZGNR)输运性质的研究[J].微纳电子技术,2009,46(8):463-466. 被引量:2
  • 5Shen L,Zeng M G,Yang S W. Electron transport properties of atomic carbon nanowires between graphene electrodes[J].Journal of the American Chemical Society,2010.11481-11486.
  • 6Ordej6n P,Artacho E,Soler J M. Self-consistent order-N density-functional calculations for very large systems[J].Physical Review,1996,(04):R10441-R10441.
  • 7Chuvilin A,Meyer J C,Siller G A. From graphene constrictions to single carbon chains[J].New Journal of Physics,2009.083019.
  • 8张盈利,刘开辉,王文龙,白雪冬,王恩哥.石墨烯的透射电子显微学研究[J].物理,2009,38(6):401-408. 被引量:4
  • 9Novoselov K S,Geim A K,Morozov S V. Electric field effect in atomically thin carbon films[J].Science,2004.666-669.
  • 10Geim A K,Novoselov K S. The rise of graphene[J].Nature Materials,2007,(3):183-191.doi:10.1038/nmat1849.

二级参考文献178

  • 1刘超平,丁建文,颜晓红.单壁碳纳米管环离散谱和连续谱间的转变[J].物理学报,2004,53(10):3472-3476. 被引量:6
  • 2Novoselov K S et al. Science, 2004, 306:666
  • 3Novoselov K S et al. Nature, 2005, 438:197
  • 4Zhang Y B et al. Nature, 2005, 438:201
  • 5Katsnelson M I, Novoselov K S, Geim A K. Nature Physics, 2006, 2 : 620
  • 6Novoselov K S et al. Nature Physics, 2006, 2:177
  • 7Geim A K, Novoselov K S. Nature Materials, 2007, 6:183
  • 8Novoselov K S et al. Science, 2007, 315:1379
  • 9Bunch J S et al. Science, 2007, 315 : 490
  • 10Schedin F et al. Nature Materials, 2007, 6:652

共引文献189

同被引文献70

  • 1PAN Min1, HUANG Zheng2, MA HuanFeng2, QIANG WeiRong2, WEI LianFu1, WANG Long2 & ZHAO Yong1,3 1 Key Laboratory of Magnetic Levitation Technologies and Maglev Trains (Ministry of Education of China), Superconductivity R&D Center (SRDC), Southwest Jiaotong University, Chengdu 610031, China,2 School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China,3 Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW, Australia.The influence of impurity on the critical thickness of the CeO_2 buffer layer for coated conductors[J].Science China(Physics,Mechanics & Astronomy),2009,52(7):993-996. 被引量:3
  • 2崔守鑫,胡海泉,肖效光,黄海军.分子动力学模拟基本原理和主要技术[J].聊城大学学报(自然科学版),2005,18(1):30-34. 被引量:25
  • 3Edgar J H.Electronic Materials Information Service(EMIS) Data Reviews[M].London:Institution of Electrical Engineers,1994.
  • 4Ponce F A,Bour D P.Nitride-based semiconductors for blue and green light-emitting devices[J].Nature,1997,386:351-359.
  • 5Serrano J,Rubio A,Heerandez E,et al.Theoretical study of the relative stability of structural phases in group-Ⅲ nitrides at high pressures[J].Phys Rev,2000,B62(24):16612-16623.
  • 6Moon W H,Hwang H J.Structural and thermodynamic properties of GaN:A molecular dynamics simulation[J].Phys Lett,2003,A315(3):319-324.
  • 7Perdew J P,Burke K,Ernzerhof M.Generalized gradient approximation made simple[J].Phys Rev Lett,1996,77(18):3865-3868.
  • 8Monkhorst H J,Pack J D.Special points for Brillouin-zone integrations[J].Phys Rev,1976,B13(12):5188-5192.
  • 9Stampfl C,Vande C.Density-functional calculations for Ⅲ-Ⅴ nitrides using the local-density approximation and the generalized gradient approximation[J].Phys Rev,1999,B59(8):5521-5535.
  • 10丁迎春,徐明,沈益斌,陈青云,段满益.γ-Si_3N_4在高压下的光学性质研究[J].四川师范大学学报(自然科学版),2007,30(6):755-759. 被引量:7

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部