期刊文献+

Lotka-Volterra系统的计算机辅助分析 被引量:1

Computer Aided Analysis for Lotka-Volterrra Systems
下载PDF
导出
摘要 综述利用符号计算处理Lotka-Volterra系统周期轨道和平衡点的存在性和稳定性问题.考虑吴(特征列)方法在捕食系统方面的应用.利用实根分离算法来判断正平衡点的唯一性从而得到单调系统的整体稳定性.通过证明多项式系统的正定性得到离散扩散系统的整体稳定性.通过Liapunov方法和实根分离算法构造Kolmogorov系统的小扰动极限环.最后考虑三维系统极限环的算法化构造. Symbolic manipulation for the existence of periodic orbits and the stability of Lotka-Voherrra systems is reviewed. Wu characteristic set method is discussed and applied to a class of prey-predator chain systems. Real root isolation algorithm is used to check the uniqueness of an equilibrium for a kind of monotone systems. The positiveness of a polynomial set implies the global stability of a class of diffusion systems. An algorithmic construction of limit cycles for 2D Kolmogorov and 3D Lotka-Volterra systems is mentioned.
作者 陆征一
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期138-146,163,共9页 Journal of Sichuan Normal University(Natural Science)
基金 高等学校博士学科点专项科研基金(20115134110001)资助项目
关键词 LOTKA-VOLTERRA系统 动力学行为 稳定性 极限环 Lotka-Volterra systems dynamic behavior stability limit cycle
  • 相关文献

参考文献2

二级参考文献9

  • 1Cart J. Applications of Center Manifold Theory[M]. New York: Springer-Verlag, 1981.
  • 2Coste J, Peyraud J, Coullet P. Asymptotic behaviour in the dynamics of competing species[J]. SIAM J Appl Math. 1979, 36. 516-542.
  • 3Hirsch M W. Systems of differential equations which are competitive or cooperative: Ⅲ[J]. Competing species, Nonlinearity, 1988, 1:51-71.
  • 4Hofbauer J. On the occurrence of limit cycles in the Volterra-Lotka equation[J]. Nonlinear Analysis, 1981.5:1003-1007.
  • 5Hofbauer J, So J W. Multiple limit cycles for three dimensional Lotka-Volterra equationsp[J]. Appl Math Lett, 1994, 7:65-70.
  • 6May R M, Leonard W. Nonlinear aspects of competition between three species[J]. SIAM J Appl Math, 1975,29:243-252.
  • 7Roy A B. Solimano F. Global stablity and oscillations in classical Lotka-Volterra loops[J]. Bull Math Biol.1982, 44:570-585.
  • 8Xiao D, Li W. Limit cycles for the competitive three dinensional Lotka-Volterra system[J]. J Diff Eqns.2000, 164:1-15.
  • 9Zeeman M L. Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems[J]. Dynamics and Stability of Systems, 1993, 8, 189-217.

共引文献4

同被引文献18

  • 1林福荣,吴静.第二类Fredholm积分方程的一个基于插值的自适应解法(英文)[J].黑龙江大学自然科学学报,2004,21(4):17-21. 被引量:1
  • 2韩国强,张丽清.二维Fredholm积分方程Nystrom方法的渐近展开及其外推[J].应用数学学报,1995,18(2):218-224. 被引量:2
  • 3黄秋梅,杨一都.Fredholm积分方程特征值问题配置法外推的Matlab实验[J].数学的实践与认识,2007,37(11):163-168. 被引量:3
  • 4Schneider C. Product integration for weakly singular in- tegral equations [J]. Mathematics of Computation, 1981, 36(2): 207-213.
  • 5Wei J, Minggen C. The exact solution and stability a- nalysis for integral equation of third or first kind with singular kernel [J]. Applied Mathematics Computa- tion, 2008, 202(4)..666-674.
  • 6Ioakimidis N I, Patras. On the natural interpolation for-mula for Cauchy type singular integral equations of the first kind [J]. Computing, 1981, 26(4) :73-77.
  • 7Babolian E, Delves L M. An augmented Galerkin meth- od for first kind Fredholm equations [J]. Ima Journal of Applied Mathematics Institute of Mathematics Its Applications, 1979, 12(5) :154-174.
  • 8Xufeng S, Danfu H. Numerical solution of Fredholm in- tegral equations of the first kind by using linear Legend- re multi-wavelets [J]. Applied Mathematics Compu- tation, 2007, 191(1) :440-444.
  • 9Maleknejad K, Sohrabi S. Numerical solution of Fred- holm integral equations of the first kind by using Leg- endre wavelets [J]. Applied Mathematics Computa- tion, 2007,186(2) :836-843.
  • 10Pedas A, Vainikko G. Integral equations with diagonal and boundary singularities of the kernel [J]. Zeitschrift FOr Analysis Und Ihre Anwendungen, 2006, 25: 487-516.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部