期刊文献+

涡脱位置及温度对涡声效应压力振荡影响 被引量:5

Effects of Vortex Shedding Position and Temperature on Vortex-Acoustic Pressure Oscillation Characteristics
下载PDF
导出
摘要 为探索涡-声效应对固体火箭发动机中压力振荡特性的影响,基于VKI(Von KarmanInstitute for Fluid Dynamics)发动机,通过改变挡板位置与燃气温度,对旋涡脱落引起的压力振荡进行了大涡模拟数值研究。耦合分析表明:挡板位于速度波腹附近,压力振荡最为严重;旋涡能量在输运过程中易于被湍流耗散,靠近喷管的二阶速度波腹处旋涡脱落压力振幅明显高于其它位置。解耦分析表明:温度对旋涡脱落频率影响不大,当旋涡脱落频率与声振频率分离后,压力振幅显著下降。 To explore the vortex-acoustic effect on pressure oscillation characteristics in solid rocket motors,different cases with variation of inhibitor position and gas temperature were numerically studied via the Large Eddy Simulation(LES) method based on the VKI motor.The aim of this work is to study the mechanism of pressure oscillations induced by vortex shedding.The coupling analysis indicates that pressure amplitude reaches to a high level when the inhibitor is located at the acoustic velocity antinodes.Vortex energy can be easily dissipated by turbulence during the transport process.The vortex shedding pressure amplitude at the second acoustic velocity close to nozzle head is larger than that of others.The decoupling analysis shows that temperature has little effect on vortex shedding frequency.Pressure amplitude rapidly decreases when the vortex shedding frequency departs from natural acoustic frequency.
出处 《推进技术》 EI CAS CSCD 北大核心 2013年第2期248-253,共6页 Journal of Propulsion Technology
基金 国家自然科学基金(51076015)
关键词 固体火箭发动机 涡-声效应 旋涡脱落 压力振荡 耦合及解耦分析 Solid rocket motor Vortex-acoustic effect Vortex shedding Pressure oscillation Coupling and decoupling analysis
  • 相关文献

参考文献12

  • 1孙维申.固体火箭发动机不稳定燃烧[M].北京:北京工业学院出版社,1987.
  • 2Vuillot F. Votex-Shedding Phenomena in Solid Rocket Motors[J]. Journal of Propulsion and Power, 1995, 11 (4) :626-639.
  • 3Dotson K W, Koshigoe S,Pace K K. Vortex Shedding in a Large Solid Rocket Motor Without Inhihitors at the Seg- ment Interfaces [ J ]. Journal of Propulsion and Power, 1997, 13(2): 197-206.
  • 4张峤,李军伟,王伟臣,苏万兴,王宁飞.固体火箭发动机涡声耦合特性数值研究[J].推进技术,2011,32(3):348-354. 被引量:10
  • 5Flandro G A, Jacobs I-I R. Vortex-Generated Sound in Cavities [ R]. AIAA 1973-1014.
  • 6Culick F E C, Magiawala K. Excitation of Acoustic Modes in a Chamber by Vortex Shedding [J]. Journal of Sound and Vibration, 1979, 64(3) :455-457.
  • 7Dunlap R, Brown R S. Exploratory Experiments on A- coustic Oscillations Driven by Periodic Vortex Shedding [J]. AIAA Journal, 1981, 19(3) :408-409.
  • 8Anthoine J, Buchlin J M, Hirschberg A. Effect of Nozzle Cavity on Resonance in Large SRM : Theoretical Modeling [J]. Journal of Propulsion and Power ,2002, 18 (2) : 304-311.
  • 9Anthoine J, Lema M R. Passive Control of Pressure Os- cillations in Solid Rocket Motors: Cold-Flow Experiments [ J]. Journal of Propulsion and Power, 2009, 25 ( 3 ) : 792 -800.
  • 10Anthoine J, Buchlin J M, Guery J F. Effect of Nozzle Cavity on Resonance in Large SRM: Numerical Simula- tions [ J]. Journal of Propulsion and Power, 2003, 19 ( 3 ) :374-384.

二级参考文献29

  • 1Blomshield F S. Summary of multi-disciplinary university research initiative in solid propellant combustion instability [R]. AIAA 2000-3172.
  • 2Fabignon Y, Dupays J, Avalon G. , et al. Instabilities and pressure oscillations in solid rocket motors [ J ]. Aerospace Science and Technology, 2003 (7) : 19-200.
  • 3Avalon G. Flow instabilities and acoustic resonance of channels with wall injection[ R]. AIAA 98-3218.
  • 4Avalon G, Josset T. Cold gas experimental applied to the understanding of aeroacoustic phenomena inside solid pro- pellant boosters [ R ]. AIAA 2006-5111.
  • 5Cerqueria S,Avalon G, Feyel F. An experimental investigation of fluid-structure interaction inside propellant rocket motots[ R]. AIAA 2009-5427.
  • 6Anthoine J, Olivari D. Cold flow simulation of vortex induced oscillations in a model of solid propellant boosters [ R]. AIAA 99-1826.
  • 7Anthoine J, Lema M R. Comparison of different passive control solutions for reducing SRM pressure oscillations using cold flow experiments[ R]. AIAA 2008-4602.
  • 8Guery J F, Ballereau S, Franck G. Thrust oscillations in solid rocket motors[ R]. AIAA 2008-4979.
  • 9Anthoine J, Planquart P, Olivari D. Cold flow investigation of the flow acoustic coupling in solid propellant boosters [ R ]. AIAA 98-0475.
  • 10Yildiz D. Influence of radial injection flow on the aeroacoustic coupling in solid propellant boosters [R]. AIAA 2001-2101.

共引文献16

同被引文献46

  • 1丛成华,秦红岗,任泽斌,陈吉明.风洞T型冲击三通管道流场特性数值模拟[J].航空动力学报,2020,35(2):235-243. 被引量:5
  • 2孙维申.固体火箭发动机不稳定燃烧[M].北京:北京工业学院出版社,1987.
  • 3陈香林,周文禄.压力管道流固耦合振动特性分析[J].火箭推进,2007,33(5):27-31. 被引量:11
  • 4Blomshield F S. Lessons learned in solid rocket combustion instability[R]. AIAA 2007-5803.
  • 5Fabignon Y, Dupays J. Instability and pressure oscillations in solid rocket motors[J]. Aerospace Science and Technology, 2003, 7(3): 191-200.
  • 6Gallier S, Godfroy F. Aluminum combustion driven instabilities in solid rocket motors[J]. Journal of Propulsion and Power, 2009, 25(2): 509-521.
  • 7Sabnis J S. Numerical simulation of distributed combustion in solid rocket motors with metalized propellant[J]. Journal of Propulsion and Power, 2003, 19(1): 48-55.
  • 8Golafshani M, Farshchi M, Ghassemi H. Effects of grain geometry on pulse-triggered combustion instability in rocket motors[J]. Journal of Propulsion and Power, 2002, 18(1): 123-130.
  • 9Javed A, Chakraborty D. Damping coefficient prediction of solid rocket motor nozzle using computational fluid dynamics[J]. Journal of Propulsion and Power, 2014, 30(1): 19-23.
  • 10Blomshield F S. Summary of multi-disciplinary university research initiative in solid propellant combustion instability[R]. AIAA 2000-3172.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部