摘要
研究了与压缩迭代函数系和扩张迭代函数系相关的自仿测度的谱性质.在和谐对的条件下,分别确定了谱对形成的一些充分条件和必要条件.首先,给出了Strichartz谱对准则的几个等价形式.其次,得到了这个谱对成立的两个必要条件.最后,提供了Strichartz谱对准则的一个严格而详细的证明.
The author considers the spectrality of self-arlene measures associated with a contractive iterated function system and an expansive iterated function system. Under the condition of a compatible pair, some necessary and sufficient conditions are determined respectively for a given pair to be a spectral pair. First~ several equivalent forms of a criterion of Strichartz for spectral pairs are obtained. Then, two necessary conditions for the same spectral pair are obtained. Finally, a detailed and rigorous proof of this criterion is provided.
出处
《数学年刊(A辑)》
CSCD
北大核心
2013年第1期1-12,共12页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11171201)
中央高校基本科研业务费专项基金(No.GK201001002)的资助
关键词
迭代函数系
自仿测度
谱对
和谐对
Iterated function system, Self-a^ne measure, Spectral pair, Com-patible pair