期刊文献+

具超音速边界可压Navier-Stokes方程解的指数衰减

Exponential Decay of Solutions to the Compressible Navier-Stokes Equations with a Supersonic Boundary
下载PDF
导出
摘要 考虑了二维空间上具超音速物理边界的可压Navier—Stokes方程的初边值问题.给定常数平衡态(P*,0),得到了所考虑问题解的整体存在性.在平衡态附近的小扰动下,利用加权能量估计方法得到解的指数衰减性. This paper considers an initial-boundary value problem of compressible Navier- Stokes equations with a supersonic physical boundary in two dimensions. Given a constant equilibrium state (p*, 0), the authors construct the global existence of solutions. By using weighted energy estimates, it is shown that the solution converges to the equilibrium state with an exponential rate when the perturbations are sutticiently small.
出处 《数学年刊(A辑)》 CSCD 北大核心 2013年第1期13-28,共16页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10171033 No.11001132)的资助
关键词 Navier—Stokes方程 初边值问题 指数衰减 加权能量方法 Navier-Stokes equation, Initial-boundary value problem, Exponentialdecay, Weighted energy method
  • 相关文献

参考文献20

  • 1Matsumura A, Nishida T. The initial value problem for the equations of motion of com- pressible viscous and heat-conductive fluids [J]. Proc Japan Acad Set A, 1979, 55:337-342.
  • 2Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases [J]. J Math Kyoto Univ, 1980, 20:67-104.
  • 3Deekelniek K. L2-decay for the compressible Navier-Stokes equations in unbounded domains [J]. Cornrn Part Diff Eq, 1993, 18:1445-1476.
  • 4Hoff D, Zumbrun K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow [J]. Indiana Univ Math J, 1995, 44:604-676.
  • 5Hoff D, Zumbrun K. Pointwise decay estimates for multi-dimensional Navier-Stokes diffusion waves [J]. Z Angew Math Phys, 1997, 48:597-614.
  • 6Liu T P, Wang W K. The pointwise systems in odd multi-dimensions [J]. estimates of diffusion wave for the Navier-Stokes Comm Math Phys, 1998, 196:145-173.
  • 7Wang W K, "fang X F. The pointwise estimates of solutions to the isentropic Navier- Stokes equations in even space dimensions [J]. J Hyperbolic Differ Equ, 2005, 2(3):673- 695.
  • 8Matsumura A, Nishida T. Initial boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids [J]. Comm Math Phys, 1983, 89:445-464.
  • 9Deckelnick K. Decay estimates for the compressible Navier-Stokes equations in un- bounded domain [J]. Math Z, 1992, 209:115-130.
  • 10Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in Ra [J]. Comm Math Phys, 1999, 200:621-659.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部