期刊文献+

Yamabe流下黎曼流形上热方程的梯度估计

Gradient Estimate for the Heat Equation on Riemannian Manifolds under the Yamabe Flow
下载PDF
导出
摘要 研究了在Yamabe流下演化的一个完备非紧黎曼流形,对流形上热方程的正解给出了两种局部的梯度估计.作为应用,可以得到这个热方程的Harnack不等式. The authors study a complete noncompact Riemannian manifold evolving under the Yamabe flow and derive two versions of localized gradient estimates for positive solutions to the heat equation on the evolving manifold. As an application, the Harnack inequality for the heat equation can be established immediately.
作者 杨飞 沈婧芳
出处 《数学年刊(A辑)》 CSCD 北大核心 2013年第1期101-110,共10页 Chinese Annals of Mathematics
基金 中国地质大学(武汉)中央高校基本科研业务费专项资金(No.CUGK120224)的资助
关键词 Yamabe流 热方程 梯度估计 Yamabe flow, Heat equation, Gradient estimate
  • 相关文献

参考文献6

  • 1Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geo- metric applications [J]. Comm Pure Appl Math, 1975, 28(3):333-354.
  • 2Li P, Yau S T. On the parabolic kernel of the SchrSdinger operator [J]. Acta Math, 1986, 156:153-201.
  • 3Perelman G. The entropy formula for the Ricci flow and its geometric applications [EB/OL]. arXiv:math/0211159v1, 2002.
  • 4Zhang Q S. Some gradient estimates for the heat equation on domains and for an equation by Perelman [J]. Int Math Res Not, 2006, 39 pp.
  • 5Bailesteanu M, Cao X D, Pulemotov A. Gradient estimates for the heat equation under the Rieei flow [J]. J Funct Anal, 2010, 258:3517-3542.
  • 6Souplet P, Zhang Q S. Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds [J]. Bull London Math Soc, 2006, 38:1045-1053.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部