期刊文献+

A Fourier Reconstruction Algorithm in π-Scheme Short-Scan SPECT 被引量:2

A Fourier Reconstruction Algorithm in π-Scheme Short-Scan SPECT
原文传递
导出
摘要 In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method. In this paper, an approximate analytical algorithm in the form of direct Fourier reconstruction is obtained for the recon- struction of data functions arisen from ^-scheme short-scan sin- gle-photon emission computed tomography(SPECT) with uniform attenuation, and the modified central slice theorem is developed. Numerical simulations are conducted to demonstrate the effec- tiveness of the developed method.
机构地区 Faculty of Science
出处 《Wuhan University Journal of Natural Sciences》 CAS 2013年第2期97-101,共5页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(61271398) the Natural Science Foundation of Ningbo(2012A610031)
关键词 single-photon emission computed tomography(SPECT) inversion formula Fourier reconstruction algorithm thecentral slice theorem n -scheme short-scan single-photon emission computed tomography(SPECT) inversion formula Fourier reconstruction algorithm thecentral slice theorem n -scheme short-scan
  • 相关文献

参考文献15

  • 1Bellini S, Piacentini M, Caflbrio C, et al. Compensation of tissue absorption in emission tomography [J]. IEEE Trans Acoust Speech Signal Process, 1979, 27:213-218.
  • 2Tretiak O J, Metz C. The exponential Radon transform [J]. SIAMJAppl Math, 1980, 39: 341-354.
  • 3Hawkins W G, Leichner P K, Yang N C. The circular har-monic transform for SPECT reconstruction and boundary conditions on the Fourier transform of the sonogram [J]. IEEE Trans Med lmaging, 1988, 7: 135-148.
  • 4Inouye T, Kose K, Hasegawa A. Image reconstruction algo- rithm for single-photon-emission computed tomography with uniform attenuation [J]. Phys Med Biol, 1989, 34: 299-304.
  • 5王金平,杜金元.A NOTE ON SINGULAR VALUE DECOMPOSITION FOR RADON TRANSFORM IN R^n[J].Acta Mathematica Scientia,2002,22(3):311-318. 被引量:3
  • 6Wang Jin-ping,Du Jin-yuan.The Harmonic Decomposition Reconstruction for the Exponential Radon Transform[J].Wuhan University Journal of Natural Sciences,2002,7(1):1-5. 被引量:2
  • 7Chen Li, Hu Lianggen. Solution stability for a class of inte- gral-differential equations [J]. Journal of Ningbo Univer- sity(NSEE), 2011,24(4): 36-40.
  • 8Shneiberg I, Ponomarev I, Dmitrichenko V, et al. On a new reconstruction algorithm in emission tomography [C]//Applied Problems of Radon Transform eds Gindikin, 1994, 162: 247-255.
  • 9Noo F, Wagner J M. Image reconstruction in 2D SPECT with 180° acquisition [J]. Inverse Problems, 2001, 17: 1357- 1371.
  • 10Pan X, Kao C, Metz C, et al. Image reconstruction in 3D short-scan SPECT [C]//2001 Int Meeting on Fulh, Three- Dimensional Image Reconstruction in Radiology and Nu- clear Medicine. New York : IEEE Press, 2002:119-124.

二级参考文献15

  • 1Ludwig D.The Radon transform on Euclidean space. Communications on Pure and Applied Mathematics . 1966
  • 2Smith K T,Keinert F.Mathematical foundation of computed tomography. Applied Optics . 1985
  • 3Quinto E T.Singular value decomposition and inversion methods for the exterior Radon transform and a spherical transform. Journal of Mathematical Analysis and Applications . 1983
  • 4Abramowitz M,Stegum I A,eds.Handbook of Mathematical Functions. . 1965
  • 5Gradshteyn I S,Ryzhik I.Tables of Integrals, Series and Products. . 1965
  • 6Louis A K.Ghosts in tomography-the null space of the Radon transform. Mathematical Methods in the Applied Sciences . 1981
  • 7Natterer F.The Mathematics of Computerized Tomograph. . 1987
  • 8Seeley R.Spherical harmonics. The American Mathematical Monthly . 1966
  • 9Maass P.The interior Radon transform. SIAM Journal on Applied Mathematics . 1992
  • 10Smith K T,Solmon D C,Wagner S L.Practical and mathematical aspects of the problem of reconstructing objects from radiographs. Bulletin of the American Mathematical Society . 1977

共引文献3

同被引文献9

  • 1段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 2Natterer F.The mathematic of computerized tomography [M].New York: John Wiley & Sons,1986:86-95.
  • 3Zeng G L,Gullberg G.T.Exact intertive reconstruction for the interior problem[J].Phys Med Biol,2009,54: 5805-5814.
  • 4Huang Q,You J S,Zeng G L,et al.Reconstruction from uniformly attenuated SPECT projection data using the DBH method[J].IEEE Trans Med Imaging,2009,28(1): 17-29.
  • 5Kunyansky L.A new SPECT reconstruction algorithm based on the Novikovs explicit inversion formula[J].Inverse problems,2001,17:293-306.
  • 6Natterer F.Inversion of the attenuated Radon transform[J].Inverse problems,2001,17:113-119.
  • 7Inouye T,Kose K,Hasegawa A.Image reconstruction algorithm for single-photon-emission computed tomo- graphy with uniform attenuation[J].Phys Med Biol,1989,34:299-304.
  • 8王金平.Radon型广义变换的反演及性态研究[J].数学物理学报(A辑),2011,31(3):636-643. 被引量:2
  • 9张小琳,景越峰.Prewitt算子边缘检测及改进[J].高能量密度物理,2011(4):155-159. 被引量:3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部