摘要
研究具有单面完整约束的有多余坐标力学系统的Lie对称性与守恒量。利用常微分方程在无限小变换下的不变性,建立了系统Lie对称性的确定方程、限制方程和附加限制方程,得到了结构方程与守恒量的形式;并研究了上述问题的逆问题,即根据系统的已知积分来求相应的Lie对称性。文末举例说明结果的应用。
This paper studies the Lie symmetries and the conserved quantities of unilateral holonomic mechanical systems with remainder coordinates. Using the invariance of ordinary differential equations under the infinitesimal transformations, the author establishes the determining equations, restriction equations, additional restriction equations of the Lie symmetries of the systems and obtains the structure equations and the form of conserved quantities. Meanwhile, the paper discusses the inverse problem of the above, i.e., finding the corresponding Lie symmetry according to a given integral of the systems. In the end of the paper, an example is given to illustrate the application of the results.
出处
《苏州城建环保学院学报》
2000年第3期39-47,共9页
Journal of Suzhou Institute of Urban Construction and Environmental Protection
基金
国家教育部博士学科点专项基金
苏州城建环保学院科研基金资助项目
关键词
分析力学
多余坐标
单面约束
LIE对称性
守恒量
analytical mechanics
remainder coordinate
unilateral constraint
Lie symmetry